Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noninvasive genetic test for Down syndrome and Edwards syndrome highly accurate

06.06.2012
New study published in American Journal of Obstetrics and Gynecology

Current screening strategies for Down syndrome, caused by fetal trisomy 21 (T21), and Edwards syndrome, caused by fetal trisomy 18 (T18), have false positive rates of 2 to 3%, and false negative rates of 5% or higher. Positive screening results must be confirmed by amniocentesis or chorionic villus sampling, which carry a fetal loss rate of approximately 1 in 300 procedures.

Now an international, multicenter cohort study finds that a genetic test to screen for trisomy 21 or 18 from a maternal blood sample is almost 100% accurate. The results of the study are published online in the American Journal of Obstetrics and Gynecology.

The trial evaluated a novel assay known as Digital Analysis of Selected Regions (DANSR) that analyzes fetal cell-free DNA, small DNA fragments which circulate in maternal blood. Unlike similar tests that analyze DNA from the entire genome, DANSR analyzes only the chromosomes under investigation for a more efficient and less expensive process. The results are evaluated with a novel analysis algorithm, the Fetal-fraction Optimized Risk of Trisomy Evaluation (FORTE), which considers age-related risks and the percentage of fetal DNA in the sample to provide an individualized risk score for trisomy detection.

A total of 4,002 pregnant women from the United States, the Netherlands, and Sweden were enrolled in the NICE (Non-Invasive Chromosomal Evaluation) study. The mean maternal age was 34.3 years and the cohort was racially and ethnically diverse. Blood samples were taken before the women underwent invasive testing for any indication, and 774 samples were excluded prior to analysis. Of the 3,228 samples that underwent analysis, 57 cases were excluded due to low fetal cfDNA in the sample and 91 samples were excluded due to failure of the assay. The classification of samples as High Risk or Low Risk using the DANSR and FORTE method was compared with the results from amniocentesis and CVS.

The DANSR and FORTE method identified 100% of the 81 T21 cases as High Risk, and there was one false positive among the 2,888 normal cases, for a false-positive rate of 0.03%. Of the 38 T18 cases, 37 were classified as High Risk and there were 2 false positives among the 2,888 normal cases, for a sensitivity of 97.4% and a false positive rate of 0.07%.

Prior studies of cfDNA have been case-control studies, comparing detection in subjects identified with T21 or T18, to a selected group of those with normal karyotypes. The current study included a large cohort of subjects undergoing invasive prenatal diagnosis. This allowed the researchers to assess the potential impact of other complex and unusual abnormalities on cfDNA test results. Overall, the presence of other chromosomal variants did not interfere with the detection of T21 or T18. While the study included primarily high-risk women, all women undergoing invasive prenatal diagnosis for any indication were eligible, so the cohort represents a broader population than reported in previous studies.

"The improvement in sequencing efficiency achieved by the DANSR platform provides a more affordable, scalable approach to cfDNA analysis with high throughput and potential for widespread clinical utility," says lead investigator Mary E. Norton, MD, director of perinatal research, Lucile Packard Children's Hospital at Stanford University. "Cell-free DNA offers high accuracy with a single blood test. It is potentially suitable as a replacement for current, relatively inefficient aneuploidy screening."

Francesca Costanzo | EurekAlert!
Further information:
http://www.elsevier.com

Further reports about: DNA DNA fragment Evaluation Forte Gynecology Noninvasive Obstetrics Risk T18 T21

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>