Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nickel isotope may be methane producing microbe biomarker

24.06.2009
Nickel, an important trace nutrient for the single cell organisms that produce methane, may be a useful isotopic marker to pinpoint the past origins of these methanogenic microbes, according to Penn State and University of Bristol, UK, researchers.

"Our data suggest significant potential in nickel stable isotopes for identifying and quantifying methanogenesis on the early Earth," said Vyllinniskii Cameron, recent Penn State Ph.D. recipient in geosciences and astrobiology and currently a post-doctoral fellow at the University of Bristol. "Little is known about the actual timing of the evolution of methane producing organisms or their metabolism. Nickel stable isotope fractionation may well prove to be the fundamental unambiguous trace metal biomarker for these methanogens."

Fractionation of an element into its component stable isotopes occurs because each isotope is slightly different in mass. Biological organisms tend to favor one isotope over another and preferentially create stores of heavy or light isotopes that researchers can measure. The presence of a specific isotopic fraction can indicate that a biological process took place. Previous researchers have looked at transition metals other than nickel as potential biomarkers.

"There is a lot of interest in iron and copper isotopes and other metals that microbes use in trace amounts," said Christopher H. House, associate professor of geosciences and director of the Penn State Astrobiology Research Center, part of the NASA Astrobiology Institute. "However, iron goes through oxidation reduction processes with or without a biological component, so there is significant complexity when it is used as a biosignature."

In nature nickel does not seem to be as adversely affected by oxidation reduction changes so isotope fractionation might be more easily attributed to biological processes, such as during microbial assimilation or uptake of metals.

For this work the researchers did not look at ancient fossil cells, but grew modern day archaea in the laboratory, controlling their habitat and recording their rate of methane production. Archaea are single cell microorganisms similar to bacteria but with different evolutionary histories and biochemical pathways. The researchers report their results in today's (June 22) online edition of the Proceedings of the National Academy of Sciences.

Through a grant from the Worldwide Universities Network and a NASA research scholarship, Cameron performed the research, including setting up the protocols for the nickel isotopic system, at the University of Bristol with Derek Vance and Corey Archer, Bristol Isotope Group, department of Earth Sciences.

Cameron first investigated samples representative of the Earth's mantle and crust that were without any biological activity. These samples showed very little variation in nickel isotopic composition. She also analyzed samples from a group of meteorites, which exhibited even less variation. These studies showed that non-biological processes do not significantly fractionate nickel isotopes.

However, isotopic analyses of pure cultures of three archaea -- Methanosarcina barkeri, Methanosarcina acetivorans and Methanococcus jannaschii -- showed that all the archaea fractionated nickel so that the nickel component in the microbe was lighter relative to the starting isotopic value of the growth medium. To test whether non-methanogenic cells would also fractionate nickel, Cameron incubated an archaea that does not produce methane, Pyrobaculum calidifontis, under the same conditions. These cells did not fractionate nickel isotopes.

"While we only tested one non-methanogen and a more diverse suite of microorganisms should be investigated, at this time, it appears that nickel isotopic fractionation produced by microorganisms in general will not be as significant as the fractionation produced by methanogenic archaea," said Cameron.

"It may be possible in the future to test organic rich sedimentary layers from 2.7 billion years ago to see if nickel isotopic fractionation occurred," said House. "Because there are no known bacteria that are methanogenic and because archaea seem to fractionate nickel isotopes, perhaps such work can help pinpoint when these methane producing organisms came into being."

Cameron is currently working on such samples and others. WUN and the NASA Astrobiology Institute supported this research.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht From a plant sugar to toxic hydrogen sulfide
19.12.2018 | Universität Konstanz

nachricht Gut microbiome regulates the intestinal immune system, researchers find
19.12.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Scientists to give artificial intelligence human hearing

19.12.2018 | Information Technology

Newly discovered adolescent star seen undergoing 'growth spurt'

19.12.2018 | Physics and Astronomy

From a plant sugar to toxic hydrogen sulfide

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>