Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

News from the ant kingdom

05.09.2012
Many pathogenic bacteria are becoming increasingly resistant to antibiotics.
New agents are needed urgently, and the quest for them is also being extended to the ant world. It is here that Würzburg biologists have now made a new discovery.

Insects, too, have to fight off bacteria. Ants, for example, live in the ground and often feed on the cadavers of other animals, so they inevitably come into very close contact with potentially harmful microorganisms. One way in which they defend themselves is by using small protein molecules, known as antimicrobial peptides, which can kill bacteria.

“Such peptides are found in all living organisms, including humans, and there are many different types of them,” explains Carolin Ratzka from the Biocenter at the University of Würzburg. The doctoral student, working with her mentor, Professor Roy Gross, and other colleagues, has now proven the presence of some of these peptides while characterizing the antimicrobial potential of the carpenter ant (Camponotus floridanus). The researchers discovered a few surprising things that might also have consequences for commonly accepted hypotheses regarding the immune system of social insects.

Peptides in social insects

The genetic material of the fruit fly Drosophila contains the blueprints for some 20 different antimicrobial peptides, and this number is also high in other insects. “Yet, social insects like bees and ants have only very few peptide genes,” says Carolin Ratzka.

This has led some biologists to conclude that bees and their like do not need so many of these deterrents because they practise a kind of social defence: the insects groom each other, separate the sick from the rest of the brood, and keep their nests clean. This might spare them the cost-intensive production of many different defence peptides.

Numerous peptides from a single gene

But the number of antimicrobial peptides is now higher than originally thought, at least in ants, as the Würzburg scientists reveal in the journal PLoS ONE. In the carpenter ant they found a further peptide gene in addition to the two previously known: this has a recurring structure and therefore contains the blueprints for as many as seven antimicrobial peptides. The researchers then examined other ant species as well and found that in one of them the gene can even produce 23 different peptides.

“The individual peptides differ from one another in their sequence, which might have an impact on their efficacy against bacteria,” says Professor Roy Gross. Further studies are now needed to show whether this assumption is correct and which bacteria are targeted by the newly discovered peptides. The Würzburg biologists have every confidence. After all, they are familiar with very similar peptides in honey bees – and these peptides are all capable of combating pathogenic bacteria.

Ratzka C, Förster F, Liang C, Kupper M, Dandekar T, et al. (2012): Molecular Characterization of Antimicrobial Peptide Genes of the Carpenter Ant Camponotus floridanus. PLoS ONE 7(8): e43036, 9 August 2012, doi:10.1371/journal.pone.0043036

Contact

Carolin Ratzka, Department of Microbiology, Biocenter at the University of Würzburg, T +49 (0)931 31-88029, carolin.ratzka@uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>