Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ways to keep proteins healthy outside the cell

09.07.2020

University of Tübingen researchers identify extracellular protein quality regulators with implications for Alzheimer's and other neurodegenerative diseases

With increasing age, and especially in neurodegenerative diseases such as Alzheimer’s, proteins tend to misfold and aggregate into harmful deposits both inside and outside cells. Secreted proteins play an important role in regulating body functions and fighting infections.


Protein aggregates (magenta dots) accumulate between tissues in the head of the worm.

Image: Della David

Now a collaborative team at the University of Tübingen has discovered mechanisms to stop secreted proteins from forming deposits outside the cell.

The team is headed by Della David, who researches aging, at the Interfaculty Institute of Biochemistry and at the German Center for Neurodegenerative Diseases (DZNE).

The findings indicate that keeping proteins in shape in body fluids helps to combat both aging and infections. The study has been published in the latest edition of Nature.

The body uses proteins as building blocks in cells – but in the form of enzymes, for example, proteins are also responsible for many metabolic processes. For this, the long amino acid chains which go to make up proteins must be folded into the correct three-dimensional shape.

“Decades of research have focused on protein quality control mechanisms inside the cell which work to avoid harmful protein aggregation,” says Della David. But such misfolded deposits also occur outside of cells.

Little was known about how they are regulated because the process is very difficult to investigate in experimental animals such as mice.

A new model for extracellular protein aggregation

In order to identify extracellular regulators, the team created a new model for extracellular protein aggregation using the tiny worm Caenorhabditis elegans. David and her colleagues found 57 extracellular regulators of protein aggregation in C. elegans.

Working with Martin Haslbeck at the Technical University of Munich, they identified the first extracellular regulator that binds to and stabilizes misfolded secreted proteins in worms. “We knew that better protein quality control inside cells helps the animals to live longer. Now we have shown that better protein quality control outside the cell does too,” says David.

“Intriguingly, the worms mobilize extracellular regulators in response to infections by pathogens,” she says. The study’s first author Ivan Gallotta adds: “We were really surprised to find that animals with better extracellular protein quality control could survive over 30 percent longer during a pathogenic attack.”

In collaboration with Ralf Sommer at the Max Planck Institute for Developmental Biology in Tübingen, the researchers found that extracellular regulators boosted the animals’ immune response.

“Many mechanisms and protein functions are shared between worms and humans” says Maximilian Peters from the Hebrew University of Jerusalem, who also participated in the study. He identified the human proteins with the highest similarities to the worm extracellular regulators.

“Our next goal is to determine if these regulators could be active against extracellular amyloid-beta protein aggregation, which is found in the brains of patients with Alzheimer’s disease,” says David. With her findings, she will seek to open up new avenues in the quest for effective treatments for Alzheimer’s disease.

“Learning more about extracellular protein quality control may also lead to a better understanding of how to promote healthy aging and protect us against infections,” she says.

Wissenschaftliche Ansprechpartner:

Dr. Della David
University of Tübingen
Interfaculty Institute of Biochemistry
German Center for Neurodegenerative Diseases (DZNE)
Phone +49 07071 9254150
della-crystal.david[at]uni-tuebingen.de

Originalpublikation:

Gallotta I., Sandhu A., Peters M., Haslbeck M., Jung R., Agilkaya S., Blersch J. L., Rödelsperger C., Röseler W., Huang C., Sommer R.J., David D.C.: Extracellular proteostasis prevents aggregation during pathogenic attack. Nature, https://dx.doi.org/10.1038/s41586-020-2461-z

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Further information:
https://uni-tuebingen.de/universitaet/aktuelles-und-publikationen/pressemitteilungen/newsfullview-pressemitteilungen/article/neue-wege-zu-gesunden-proteinen-ausserhalb-der-zelle/

More articles from Life Sciences:

nachricht Study clarifies kinship of important plant group
05.08.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Human cell-based test systems for toxicity studies: Ready-to-use Toxicity Assay (hiPSC)
05.08.2020 | Fraunhofer-Institut für Biomedizinische Technik IBMT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Manifestation of quantum distance in flat band materials

05.08.2020 | Physics and Astronomy

Discovery shows promise for treating Huntington's Disease

05.08.2020 | Health and Medicine

Rock debris protects glaciers from climate change more than previously known

05.08.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>