Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique maps life's effects on our DNA

21.07.2014

Researchers develop new, powerful single-cell technique to study environmental effects on DNA

Researchers at the BBSRC-funded Babraham Institute, in collaboration with the Wellcome Trust Sanger Institute Single Cell Genomics Centre, have developed a powerful new single-cell technique to help investigate how the environment affects our development and the traits we inherit from our parents.

The technique can be used to map all of the 'epigenetic marks' on the DNA within a single cell. This single-cell approach will boost understanding of embryonic development, could enhance clinical applications like cancer therapy and fertility treatments, and has the potential to reduce the number of mice currently needed for this research.

'Epigenetic marks' are chemical tags or proteins that mark DNA and act as a kind of cellular memory. They do not change the DNA sequence but record a cell's experiences onto the DNA, which allows cells to remember an experience long after it has faded. Placing these tags is part of normal development; they tell genes whether to be switched on or off and so can determine how the cell develops.

Different sets of active genes make a skin cell different from a brain cell, for example. However, environmental cues such as diet can also alter where epigenetic tags are laid down on DNA and influence an organism's long-term health.

Dr Gavin Kelsey, from the Babraham Institute, said: "The ability to capture the full map of these epigenetic marks from individual cells will be critical for a full understanding of early embryonic development, cancer progression and aid the development of stem cell therapies.

"Epigenetics research has mostly been reliant on using the mouse as a model organism to study early development. Our new single-cell method gives us an unprecedented ability to study epigenetic processes in human early embryonic development, which has been restricted by the very limited amount of tissue available for analysis."

The research, published in Nature Methods, offers a new single-cell technique capable of analysing DNA methylation – one of the key epigenetic marks – across the whole genome. The method treats the cellular DNA with a chemical called bisulphite. Treated DNA is then amplified and read on high-throughput sequencing machines to show up the location of methylation marks and the genes being affected.

These analyses will help to define how epigenetic changes in individual cells during early development drive cell fate. Current methods observe epigenetic marks in multiple, pooled cells. This can obscure modifications taking place in individual cells at a time in development when each cell has the potential to form in a unique way. The new method has already revealed that many of the methylation marks that differ between individual cells are precisely located in sites that control gene activity.

Dr Gavin Kelsey, said: "Our work provides a proof-of-principle that large-scale, single-cell epigenetic analysis is achievable to help us understand how epigenetic changes control embryonic development. The application of single-cell approaches to epigenetic understanding goes far beyond basic biological research. Future clinical applications could include the analysis of individual cancer cells to provide clinicians with the information to tailor treatments, and improvements in fertility treatment by understanding the potential for epigenetic errors in assisted reproduction technologies."

###

Prof Wolf Reik, a founder of the Wellcome Trust Sanger Institute Single Cell Genomics Centre, added: "This exciting new method has already given some remarkable insights into how much variation there is in the epigenetic information in embryonic stem cells. This may underlie the enormous plasticity these cells have to develop into many different cell types in the body".

This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC), Medical Research Council (MRC), the Wellcome Trust, EU Blueprint and EU EpiGeneSys.

Rob Dawson | Eurek Alert!

Further reports about: Biotechnology Cell DNA Genomics Trust Wellcome effects epigenetic fertility genes methylation technique

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>