Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique allows scientists to find rare stem cells within bone marrow

07.10.2014

Deep within the bone marrow resides a type of cells known as mesenchymal stem cells (MSCs). These immature cells can differentiate into cells that produce bone, cartilage, fat, or muscle — a trait that scientists have tried to exploit for tissue repair.

In a new study that should make it easier to develop such stem-cell-based therapies, a team of researchers from MIT and the Singapore-MIT Alliance in Research and Technology (SMART) has identified three physical characteristics of MSCs that can distinguish them from other immature cells found in the bone marrow.

Based on this information, they plan to create devices that could rapidly isolate MSCs, making it easier to generate enough stem cells to treat patients.

Until now, there has been no good way to separate MSCs from bone marrow cells that have already begun to differentiate into other cell types, but share the same molecules on the cell surface. This may be one reason why research results vary among labs, and why stem-cell treatments now in clinical trials are not as effective as they could be, says Krystyn Van Vliet, an MIT associate professor of materials science and engineering and biological engineering and a senior author of the paper, which appears in the Proceedings of the National Academy of Sciences this week.

"Some of the cells that you're putting in and calling stem cells are producing a beneficial therapeutic outcome, but many of the cells that you're putting in are not," Van Vliet says. "Our approach provides a way to purify or highly enrich for the stem cells in that population. You can now find the needles in the haystack and use them for human therapy."

Lead authors of the paper are W.C. Lee, a former graduate student at the National University of Singapore and SMART, and Hui Shi, a former SMART postdoc. Other authors are Jongyoon Han, an MIT professor of electrical engineering and biological engineering, SMART researchers Zhiyong Poon, L.M. Nyan, and Tanwi Kaushik, and National University of Singapore faculty members G.V. Shivashankar, J.K.Y. Chan, and C.T. Lim.

Physical markers

MSCs make up only a small percentage of cells in the bone marrow. Other immature cells found there include osteogenic cells, which have already begun the developmental path toward becoming cartilage- or bone-producing cells. Currently, researchers try to isolate MSCs based on protein markers found on the cell surfaces. However, these markers are not specific to MSCs and can also yield other types of immature cells that are more differentiated.

"Conventional cell-surface markers are frequently used to isolate different types of stem cells from the human bone marrow, but they lack sufficient 'resolution' to distinguish between subpopulations of mesenchymal stromal cells with distinct functions," Lee says.

The researchers set out to find biophysical markers for multipotency — the ability to become many different cell types. They first suspected that cell size might be a factor, because fetal bone marrow stem cells, which tend to have a higher percentage of MSCs, are usually small in diameter.

To test this hypothesis, the researchers used a device Han had previously developed to capture circulating tumor cells based on their size. They isolated bone marrow cells based on size and found that while none of the larger cells were multipotent, not all of the smaller cells were multipotent, so size alone cannot be used to distinguish MSCs.

After measuring several other physical traits, the researchers found two that could be combined with size to completely distinguish MSCs from other stem cells: stiffness of the cell, and the degree of fluctuation in the cell's nuclear membrane.

"You don't need more than these three, but you also can't use fewer than these three," Van Vliet says. "We now have a triplet of characteristics that identifies populations of cells that are going to be multipotent versus populations of cells that are only going to be able to become bone or cartilage cells."

These features appear to correspond to what is already known about stem cells, Van Vliet says. Compared with cells that have already committed to their final fate, immature cells have genetic material that moves around inside the nucleus, producing more fluctuations of the nuclear cell membrane. Stem cells also have a less rigid cytoskeletal structure than those of highly differentiated cells, at least when adhered to materials such as glass, making those attached cells seem less stiff.

Better regeneration

The researchers then tested the regenerative abilities of the isolated MSCs in mice. They found that these cells could help repair both muscle and bone injuries, while cells identified as osteogenic stromal cells were able to repair bone but not muscle.

"We have provided the first demonstration that subpopulations of mesenchymal stromal cells can be identified and highly enriched for bone growth and muscle repair," Lee says. "We envision that this approach would also be important in the selection and purification of bone marrow-derived stem cells for tissue repair in human patients suffering from a range of tissue-degenerative diseases."

The team is now working on high-speed methods for separating MSCs. Creating more pure populations of such cells should lead to more effective stem-cell treatments for tissue injuries, Van Vliet says.

"Instead of putting in 30 percent of the cells that you want, and 70 percent filler, you're putting in 100 percent of the cells that you want," she explains. "That should lead to more reliable patient outcomes, because you're not going to have this variability from batch to batch, or patient to patient, in how many of each cell population are present."

Van Vliet and Poon also hope to begin a clinical trial of the osteogenic cells isolated in this study, which could prove useful for treating bone injuries.

###

The research was funded by the National Research Foundation of Singapore through the SMART BioSystems and Micromechanics Interdisciplinary Research Group.

Written by Anne Trafton, MIT News Office

Sarah McDonnell | Eurek Alert!
Further information:
http://www.mit.edu

Further reports about: MIT MSCs Singapore Technology bone marrow distinguish found immature injuries populations stem cells technique

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Computer model predicts how fracturing metallic glass releases energy at the atomic level

20.07.2018 | Physics and Astronomy

Relax, just break it

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>