Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New proton 'starter' for optogenetics

02.10.2017

Scientists have examined a protein that will find application in optogenetics and could be used to control muscle and neuronal cells. The paper on the light-sensitive NsXeR protein of the xenorhodopsin class was published in Science Advances by the international team of researchers from MIPT, Forschungszentrum Jülich, and Institut de Biologie Structurale.

Why it matters


Researchers described a new optogenetic tool -- a protein called NsXeR, which belongs to the class of xenorhodopsins. When exposed to light, it can activate individual neurons, making them send set signals to the nervous system. Apart from applications in nervous system research, xenorhodopsins may also take over muscle cell control.

Credit: MIPT Press Office

Optogenetics is a new technique that uses light to control neurons or muscle cells in living tissue. It has found wide application in nervous system studies. Optogenetic manipulations are so precise that they make it possible to control individual neurons by switching certain information transfer pathways on or off. Similar methods are also used to partially reverse eyesight or hearing loss as well as to control muscle contractions.

The main tools of optogenetics are light-sensitive proteins that are intentionally inserted into particular cells. After the insertion, the protein becomes attached to the cell surface and moves ions across the membrane upon exposure to light.

Thus, in a modified neuron cell, a correctly chosen light impulse may activate a neural signal or, on the contrary, suppress all the signals, depending on which protein is used. By activating signals from individual neurons, it is possible to imitate the functioning of certain brain regions -- a technique that modulates the behavior of the organism under study. If such proteins are inserted in muscle cells, an external signal can tense or relax them.

The authors of the paper, which was published in Science Advances, described a new optogenetic tool -- a protein called NsXeR, which belongs to the class of xenorhodopsins. When exposed to light, it can activate individual neurons, making them send set signals to the nervous system.

Apart from applications in nervous system research, xenorhodopsins may also take over muscle cell control. To activate these cells, it is preferable that calcium ion transport be blocked, because alterations in the ion concentration can affect them. When using proteins that transport various positive ions (such as calcium) nonselectively, undesirable side effects are likely to appear.

The discovered protein helps to bypass uncontrolled calcium translocation: It is selective and pumps nothing but the protons into the cell. Because of this selectivity, it has a considerable advantage over its chief rival channelrhodopsin, which is being extensively used in research but does not discriminate between positively charged ions.

What is more, xenorhodopsin acts as a reliable pump, transporting protons both into and out of the cell regardless of their concentration, whereas channelrhodopsin only allows ions to move from an area of higher concentration to an area of lower concentration.

In both cases a positive charge inflow into an excitable cell reduces the tension between its inner and outer membrane surfaces. Such membrane depolarization generates a nerve or muscle impulse. The ability to induce such an impulse by pumping nothing but protons will reduce possible side effects during research.

"So far we have all the necessary data on how the protein functions. This will become the basis of our further research aimed at optimizing and adjusting the protein parameters to the needs of optogenetics," says Vitaly Shevchenko, the lead author of the paper and a staff member at the MIPT Laboratory for Advanced Studies of Membrane Proteins.

###

This research was supported ERA.Net RUS PLUS and the Ministry of Education and Science of the Russian Federation (project ID 323, RFMEFI58715X0011).

Media Contact

Asya Shepunova
shepunova@phystech.edu
7-916-813-0267

 @phystech

https://mipt.ru/english/ 

Asya Shepunova | EurekAlert!

More articles from Life Sciences:

nachricht Microbes can grow on nitric oxide (NO)
18.03.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Novel methods for analyzing neural circuits for innate behaviors in insects
15.03.2019 | Kanazawa University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>