Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New microscopy system captures 'lost' fluorescence, improving resolution

12.08.2016

Taking a cue from medical imaging, scientists have invented a multi-view microscope that captures higher-resolution, 3D images of live cells and tissues without upping the dose of potentially harmful radiation the specimens receive.

The researchers, who work collaboratively at the Marine Biological Laboratory's Whitman Center, published their results this week in the journal Optica.


This is a macrophage actin labeled with green fluorescent protein, imaged with the new triSPIM microscope (left) and the diSPIM (right).

Credit: Yicong Wu and Valentin Jaumouille

"Everybody knows fluorescence imaging is inefficient in that the microscope only captures a portion of the light (spewing off the specimen)," says senior author Hari Shroff of the National Institute of Biomedical Imaging and Bioengineering. "In this paper, we showed you can not only capture that lost light, but use computation to fuse it to the existing image and make the image sharper."

Developed by Yicong Wu, a staff scientist in Shroff's lab, the new system achieved resolution of up to 235 x 235 x 340 nanometers, which is double the volumetric resolution of traditional fluorescence microscopy methods.

To collect more of the available light (which, in turn, provides more information about the specimen), the new microscope has three objective lenses acquiring views of the sample simultaneously. The views are then aligned and merged by a computational process known as deconvolution.

Those computations were worked out in collaboration with co-author Patrick La Rivière of the University of Chicago's Radiology Department, who typically develops algorithms for improving "dose efficiency" in human-scale medical imaging, such as CAT scans.

"In medical imaging, we are always worried about dose, about capturing every X-ray [used on the patient to improve scan resolution]. We are concerned with 'How can we do more with less?'" La Rivière says.

In microscopy, the amount of light used presents similar concerns. "If you use very intense illuminations to image something microscopic like a worm embryo, you might change its biology or even kill it. You need to be dose efficient with your light," La Rivière says.

La Rivière and Shroff began collaborating at the MBL in 2014, initially on algorithms to improve Shroff's diSPIM microscope (which has two objective lenses) and eventually on the new three-lensed microscope (called triSPIM).

La Rivière this year was named an MBL Fellow. Shroff is an MBL Whitman Center Scientist and co-director of the MBL's Optical Microscopy and Imaging in the Biomedical Sciences course.

###

Citation:

Yicong Wu, P. Chandris, P.W. Winter, E.Y. Kim, V. Jaumouillé, A. Kumar, M. Guo, J.M. Leung, C. Smith, I. Rey-Suarez, H. Liu, C.M. Waterman, K.S. Ramamurthi, P. La Riviere, H. Shroff (2016) Simultaneous multi-view capture and fusion improves spatial resolution in wide-field and light-sheet microscopy. Optica 3, 8: 897-920; doi: 10.1364/OPTICA.3.000897

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery - exploring fundamental biology, understanding marine biodiversity and the environment, and informing the human condition through research and education. Founded in Woods Hole, Massachusetts in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

Media Contact

Diana Kenney
dkenney@mbl.edu
508-289-7139

 @mblscience

http://www.mbl.edu 

Diana Kenney | EurekAlert!

More articles from Life Sciences:

nachricht Measurement of thoughts during knowledge acquisition
25.03.2019 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Important Progress in the Fight against Testicular Cancer
25.03.2019 | Universität Bremen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Important Progress in the Fight against Testicular Cancer

25.03.2019 | Life Sciences

Measurement of thoughts during knowledge acquisition

25.03.2019 | Life Sciences

Eliminating hepatitis C viruses effectively

25.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>