Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New microscopy system captures 'lost' fluorescence, improving resolution

12.08.2016

Taking a cue from medical imaging, scientists have invented a multi-view microscope that captures higher-resolution, 3D images of live cells and tissues without upping the dose of potentially harmful radiation the specimens receive.

The researchers, who work collaboratively at the Marine Biological Laboratory's Whitman Center, published their results this week in the journal Optica.


This is a macrophage actin labeled with green fluorescent protein, imaged with the new triSPIM microscope (left) and the diSPIM (right).

Credit: Yicong Wu and Valentin Jaumouille

"Everybody knows fluorescence imaging is inefficient in that the microscope only captures a portion of the light (spewing off the specimen)," says senior author Hari Shroff of the National Institute of Biomedical Imaging and Bioengineering. "In this paper, we showed you can not only capture that lost light, but use computation to fuse it to the existing image and make the image sharper."

Developed by Yicong Wu, a staff scientist in Shroff's lab, the new system achieved resolution of up to 235 x 235 x 340 nanometers, which is double the volumetric resolution of traditional fluorescence microscopy methods.

To collect more of the available light (which, in turn, provides more information about the specimen), the new microscope has three objective lenses acquiring views of the sample simultaneously. The views are then aligned and merged by a computational process known as deconvolution.

Those computations were worked out in collaboration with co-author Patrick La Rivière of the University of Chicago's Radiology Department, who typically develops algorithms for improving "dose efficiency" in human-scale medical imaging, such as CAT scans.

"In medical imaging, we are always worried about dose, about capturing every X-ray [used on the patient to improve scan resolution]. We are concerned with 'How can we do more with less?'" La Rivière says.

In microscopy, the amount of light used presents similar concerns. "If you use very intense illuminations to image something microscopic like a worm embryo, you might change its biology or even kill it. You need to be dose efficient with your light," La Rivière says.

La Rivière and Shroff began collaborating at the MBL in 2014, initially on algorithms to improve Shroff's diSPIM microscope (which has two objective lenses) and eventually on the new three-lensed microscope (called triSPIM).

La Rivière this year was named an MBL Fellow. Shroff is an MBL Whitman Center Scientist and co-director of the MBL's Optical Microscopy and Imaging in the Biomedical Sciences course.

###

Citation:

Yicong Wu, P. Chandris, P.W. Winter, E.Y. Kim, V. Jaumouillé, A. Kumar, M. Guo, J.M. Leung, C. Smith, I. Rey-Suarez, H. Liu, C.M. Waterman, K.S. Ramamurthi, P. La Riviere, H. Shroff (2016) Simultaneous multi-view capture and fusion improves spatial resolution in wide-field and light-sheet microscopy. Optica 3, 8: 897-920; doi: 10.1364/OPTICA.3.000897

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery - exploring fundamental biology, understanding marine biodiversity and the environment, and informing the human condition through research and education. Founded in Woods Hole, Massachusetts in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

Media Contact

Diana Kenney
dkenney@mbl.edu
508-289-7139

 @mblscience

http://www.mbl.edu 

Diana Kenney | EurekAlert!

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>