Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method to map miniature brain circuits

15.01.2018

Scientists have developed a new technique to map electrical circuits in the brain far more comprehensively than ever before

In a feat of nanoengineering, scientists have developed a new technique to map electrical circuits in the brain far more comprehensively than ever before.


Model (left) and high resolution image (right) of the nanoengineered micropipette with holes to distribute electrical current.

Credit: Daniel Schwarz

In the brain, dedicated groups of neurons that connect up in microcircuits help us process information about things we see, smell and taste. Knowing how many and what type of cells make up these microcircuits would give scientists a deeper understanding of how the brain computes complex information about the world around us. But existing techniques have failed to paint a complete picture.

The new technique, developed by researchers at the Francis Crick Institute, overcomes previous limitations and has enabled them to map out all 250 cells that make up a microcircuit in part of a mouse brain that processes smell - something that has never been achieved before.

The method, published in Nature Communications today, could be used by scientists worldwide to uncover the architecture of different parts of the brain.

"Traditionally, scientists have either used colour-tagged viruses or charged dyes with an applied electric current to stain brain cells, but these approaches either don't label all cells or they damage the surrounding tissue," said Andreas Schaefer, Group Leader at the Crick who led the research.

By creating a series of tiny holes near the end of a micropipette using nano-engineering tools, the team found that they could use charged dyes but distribute the electrical current over a wider area, to stain cells without damaging them. And unlike methods that use viral vectors, they could stain up to 100% of the cells in the microcircuit they were investigating. They also managed to work out the proportions of different cell types in this circuit, which may give clues into the function of this part of the brain.

Andreas added: "We're obviously working at a really small scale, but as the brain is made up of repeating units, we can learn a lot about how the brain works as a computational machine by studying it at this level. Now that we have a tool of mapping these tiny units, we can start to interfere with specific cell types to see how they directly control behaviour and sensory processing."

###

The paper 'Architecture of a mammalian glomerular domain revealed by novel volume electroporation using nanoengineering microelectrodes' is published in Nature Communications.

The work was conducted in collaboration with researchers at the Max-Planck-Institute for Medical Research in Heidelberg, Heidelberg University, Heidelberg University Hospital, UCL, the MRC National Institute for Medical Research and Columbia University Medical Center.

Media Contact

Greta Keenan
press@crick.ac.uk
44-203-796-3627

 @thecrick

http://www.crick.ac.uk 

Greta Keenan | EurekAlert!
Further information:
https://www.crick.ac.uk/news/science-news/2018/01/12/new-method-to-map-miniature-brain-circuits/
http://dx.doi.org/10.1038/s41467-017-02560-7

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>