Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings help explain speedy transported into and out of the cell's nucleus

21.09.2015

'Fuzzy' interaction makes it possible for the nuclear pore complex to rapidly and selectively move large molecules

A cell does everything it can to protect its nucleus, where precious genetic information is stored. That includes controlling the movement of molecules in and out using gateways called nuclear pore complexes (NPCs).


Because it lacks a predictable structure, an FG Nup (green), a component of the nuclear pore complex, can interact quickly with a transport factor (purple) bound to large cargo. This interaction makes selective and rapid transport into and out of the nucleus possible.

Credit: Laboratory of Cellular and Structural Biology at The Rockefeller University

Now, researchers at The Rockefeller University, Albert Einstein College of Medicine, and the New York Structural Biology Center have identified the molecular mechanism that makes both swift and cargo-specific passage through the NPC possible for large molecules. Their work appeared September 15 in eLife.

Scientists are paying close attention to this regulation since dysfunction in nuclear transport has been linked to many diseases, including cancers and developmental disorders.

While small molecules can easily pass in and out of the nucleus, the transport of large molecules such as proteins and RNA is more complex and less well understood. These are moved through the NPC rapidly, but also selectively to avoid allowing the wrong big molecules through.

It was already known that proteins called transport factors bind to large cargo and escort it through the NPC. A team led by Michael P. Rout, a professor at Rockefeller University and head of the Laboratory of Cellular and Structural Biology, and David Cowburn, a professor of biochemistry and of physiology & biophysics at Albert Einstein College of Medicine, sought to explain the speed with which transport factors ferry large molecules across the NPC, a process that lasts only a few milliseconds.

"It's understood how these transport factors selectively choose and bind to their cargo," Rout says. "However, it's been unclear how such a specific process can also shepherd molecules through the nuclear pore complex so quickly."

At the center of the NPC, the transport factors and their cargo must pass through a selectivity filter made of proteins called FG Nups. These proteins form a dense mesh that normally prevents large molecules from getting through. Using a technique known as nuclear magnetic resonance spectroscopy, the researchers collected atomic-scale information about the behavior of the FG Nups, focusing on Nsp1, the most studied representative of the FG Nups.

Normally, proteins fold into large structures. Relative to small molecules such as water, these large protein structures move very slowly. This means their interactions are correspondingly slow.

The researchers measured the physical state of FG repeats with and without transport factors bound to them. They found that rather than folding like proteins generally do, the FG Nups are loose and string-like, remaining highly dynamic and lacking a predictable structure.

"Usually, binding between traditionally folded proteins is a time consuming, cumbersome process, but because the FG Nups are unfolded, they are moving very quickly, very much like small molecules. This means their interaction is very quick," explains Rout.

The disordered structure of the FG regions is critical to the speed of transport, allowing for quick loading and unloading of cargo-carrying transport factors. At the same time, because transport factors have multiple binding sites for FG Nups, they are the only proteins that can specifically interact with them -- making transport both fast and specific.

"We observed that there is minimal creation of a static well-ordered structure in complexes of FG Nups and transport factors," says Cowburn. "Our observations are, we propose, the first case where the 'fuzzy' property of an interaction is a key part of its actual biological function."

The team hopes this discovery will lead to detailed characterizations of nuclear transport pathways and to more close studies of the NPC's function. Ultimately, a better understanding of how the NPC works will not only provide new insight into the basic biology of cells, but also have implications for health and disease.

Wynne Parry | EurekAlert!

Further reports about: Biology Rockefeller factors large molecules proteins small molecules

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>