Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings about the molecular effectiveness of the anti-malaria drug artemisinin

30.01.2019

Researchers at the Rudolf Virchow Center of the University of Würzburg have unveiled the molecular effectiveness of artemisinins. These new findings have the potential to advance the development of medicines for diseases such as Alzheimer's, schizophrenia and epilepsy. The study was published in the journal Neuron.

Artemisinin is derived from the leaves and flowers of the annual mugwort (Artemisia annua) and has been used in traditional Chinese medicine for centuries. The effectiveness was investigated by the Chinese researcher Tu Youyou and rewarded with the Nobel Prize.


Schematic representation of the formation of gephyrin-artemisinin complex.

Image: Dr. Vikram Kasaragod, Rudolf Virchow Center


Incoming artemisinins (a) targets the universal receptor binding pocket in gephyrin E domain and displaces the interacting receptor (b) from the protein to form the gephyrin-artemisinin complex (c)

Image: Dr. Vikram Kasaragod, Rudolf Virchow Center

Artemisinin and its semi-synthetic derivatives - collectively known as artemisinins - are used to treat the tropical infectious disease malaria. In addition, these molecules also influence multiple cellular processes in humans.

For example, artemisinins are able to activate the immune system against several types of cancer or to regulate the differentiation of pancreatic T-alpha cells, which could potentially be useful in the therapy of diabetes.

Molecular Mechanisms so far unknown

"Although this clinically-approved drug class is well established and has been used in some extent for centuries, it was unclear which molecular mechanisms underlie the corresponding cellular activities, such as target protein rfhumecognition and modulation," explains Dr. Vikram Kasaragod.

The postdoctoral fellow in the research group of Prof. Hermann Schindelin at the Rudolf Virchow Center is the first author of this article in the renowned journal "Neuron" and ensures with this research work a significant gain in knowledge (see also the related Preview by Ryan Hibbs in the same Issue of "Neuron").

Comprehensive model for the regulation of inhibitory neurotransmission developed

The structural biologist was the first to solve the crystal structures of two different artemisinin derivatives - artesunate and artemether - in a complex with gephyrin. By binding to inhibitory glycine and GABAA receptors, gephyrin acts as a central scaffold protein of inhibitory postsynapses in the mammalian central nervous system. Gephyrin has only recently been identified as an artemisinin target protein.

The results clearly demonstrate how artemisinins target the universal receptor binding pocket in gephyrin and compete with the inhibitory neurotransmitter receptors for an overlapping binding site (see picture). These new findings could thus also serve as an effective tool to understand the physiology of the human brain.

According to Kasaragod, the crystal structures form, together with biochemical, electrophysiological and in vivo data, a comprehensive model of the regulation of inhibitory neurotransmission by artemisinine. According to him, this model clearly describes the interactions between proteins and drugs.

Important step for the development of drugs

"Our data not only provide a solid foundation for understanding how artemisinins are recognized by a target molecule, but will also help researchers to develop and optimize these agents into highly specific modulators of gephyrin. These modulators may play an important role in the treatment of neurological diseases such as Alzheimer's disease, schizophrenia and epilepsy," says Schindelin, the lead investigator.

The data published in Neuron are the result of an interdisciplinary collaboration with other groups at the University of Würzburg, the University Medical Center in Hamburg and the University of Copenhagen.

People
Dr. Vikram Kasaragod postdoctoral fellow in the research group of Prof. Hermann Schindelin at the Rudolf Virchow Center of the University of Würzburg.

Prof. Dr. Hermann Schindelin is Professor of Structural Biology and Biochemistry. Since 2006 he is head of a research group at the Rudolf Virchow Center for Experimental Biomedicine of the University of Würzburg.

Wissenschaftliche Ansprechpartner:

Dr. Vikram Kasaragod (Schindelin Group, Rudolf Virchow Center) vikram.kasaragod@virchow.uni-wuerzburg.de

Prof. Dr. Hermann Schindelin (Rudolf Virchow Center)
Tel. 0931 31 80382, hermann.schindelin@virchow.uni-wuerzburg.de

Dr. Daniela Diefenbacher (Press Office, Rudolf Virchow Center)
Tel. 0931 3188631, daniela.diefenbacher@uni-wuerzburg.de

Originalpublikation:

Vikram Babu Kasaragod, Torben Johann Hausrat, Natascha Schaefer, Maximilian Kuhn, Nikolaj Riis Christensen, Ingrid Tessmer, Hans Michael Maric, Kenneth Lindegaard Madsen, Christoph Sotriffer, Carmen Villmann, Matthias Kneussel and Hermann Schindelin: Elucidating the Molecular Basis for Inhibitory Neurotransmission Regulation by Artemisinins. Neuron (2019) https://doi.org/10.1016/j.neurin.2019.01.001

Weitere Informationen:

https://www.uni-wuerzburg.de/en/rvz/rvz-news/single/news/new-findings-about-the-...

Dr. Daniela Diefenbacher | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>