Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery: Common jellyfish is actually two species

22.11.2017

Researchers determine that US Atlantic sea nettle and the Atlantic bay nettle are individual species

University of Delaware professor Patrick Gaffney and alumnus Keith Bayha, a research associate with the Smithsonian's National Museum of Natural History, have determined that a common sea nettle jellyfish is actually two distinct species.


This image shows two different jellyfish. At left is US Atlantic sea nettle (Chrysaora quinquecirrha) and at right is the Atlantic bay nettle (Chrysaora chesapeakei).

Credit: Photos by Shannon Howard, South Carolina Aquarium; Keith Bayha

The Atlantic sea nettle is one of the most common and well known jellyfish along the U.S. East Coast, especially in the Chesapeake Bay and Rehoboth Bay where they commonly sting swimmers in large numbers. Since it was described nearly 175 years ago, the jellyfish has been assumed to be a single species.

The discovery that is was actually two distinct species, Gaffney said, was made possible by DNA sequencing techniques.

"Before DNA came along, people in museums looked at organisms and counted spines and bristles, measured things, and sorted organisms by their physical characteristics in order to identify species," Gaffney said. "In the case of this jellyfish, which has been commonly known for centuries, Keith found through DNA sequencing that there were actually two groups."

Turns out, the ocean-based sea nettle jellyfish is larger and has approximately 40 percent more tentacles (40, as compared to 24) than its bayside counterpart. The ocean sea nettle also has a larger bell, the top portion of the aquatic animal, while the tentacles are shorter than those in the bay nettle species.

Bayha, the paper's lead author, earned his doctoral degree in biological sciences at UD in 2005. While at UD, he worked closely with Gaffney at the Hugh R. Sharp Campus in Lewes and, during fieldwork, collected jellyfish off the Delaware coast near Cape Henlopen. Bayha's interest in the species continued well after he completed his degree, and he's collected specimens everywhere from Norway to Brazil, and studied museum specimens from the Smithsonian, where he now works.

Genetic testing of samples revealed differences in some of the sea nettle jellyfish. Working with Gaffney and Allen Collins from the National Oceanic and Atmospheric Association's National Systematics Laboratory, Bayha confirmed that there were actually two distinct species: an ocean-based species (Chrysaora quinquecirrha, "sea nettle") and a bay-based species (Chrysaora chesapeakei, "bay nettle") by comparing DNA data from the physical measurements of each species, and using statistical modeling to ask, "how good is the morphology for separating the species?"

"When you go back and pay close attention, you start counting the number of stinging cells and types, you see discrete differences that correspond to the DNA," said Gaffney. "In many cases, when we plotted the data, the graphs looked entirely different with no overlap, reaffirming that it was two species."

The newly recognized of the species is the bay nettle, which is found in less salty waters called estuaries, such as the Chesapeake Bay. NOAA produces a daily jellyfish forecast for the Chesapeake Bay, where jellyfish blooms can sometimes become a nuisance. According to Gaffney, having two distinct species may explain why efforts to understand the factors that affect a jellyfish bloom are so difficult.

The discovery also may be good news for the Eastern oyster, which is found on the Atlantic and Gulf Coasts and is the most widely consumed type of oyster. This is because bay nettle jellyfish eat harmless comb jellies called Mnemiopsis, a key predator to oyster larvae. If the bay nettles are effective at scooping up the Mnemiopsis, then the Eastern oyster larvae may have a better chance at survival.

Interestingly, the new research showed that the bay nettle seems to be closely related to jellyfish found in coastal regions of Ireland, Argentina and Africa. But according to Bayha, it's not unusual that no one took notice of these differences before.

"It's not that I did anything that different, it's just that no one else looked for a very long time," Bayha said. "Jellyfish are something people don't pay attention to because they're fleeting. They come and go, are difficulty to study, and they don't have hard parts like shells that wash up on shore."

###

The researchers reported their study findings in the scientific journal PeerJ.

Media Contact

Peter Bothum
pbothum@udel.edu
302-831-1418

 @UDResearch

http://www.udel.edu 

Peter Bothum | EurekAlert!

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>