Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuronal activity induces tau release from healthy neurons

15.02.2013
Researchers from King’s College London have discovered that neuronal activity can stimulate tau release from healthy neurons in the absence of cell death.

The results published by Diane Hanger and her colleagues in EMBO reports show that treatment of neurons with known biological signaling molecules increases the release of tau into the culture medium. The release of tau from cortical neurons is therefore a physiological process that can be regulated by neuronal activity.

Tau proteins stabilize microtubules, the long threads of polymers that help to maintain the structure of the cell. However, in Alzheimer’s disease or certain types of dementia, tau accumulates in neurons or glial cells, where it contributes to neurodegeneration.

In addition to intracellular aggregation, recent experiments have shown that tau is released from neuronal cells and taken up by neighboring cells, which allows the spread of aggregated tau across the brain. This release could occur passively from dying neuronal cells, though some evidence suggests it might take place before neuronal cell death and neurodegeneration. The new findings indicate that tau release is an active process in healthy neurons and this could be altered in diseased brains.

“Our findings suggest that altered tau release is likely to occur in response to changes in neuronal excitability in the Alzheimer’s brain. Secreted tau could therefore be involved in the propagation of tau pathology in tauopathies, a group of neurodegenerative diseases associated with the accumulation of tau proteins in the brain,” commented Diane Hanger, Reader in the Department of Neuroscience at King’s College London. In these experiments, Amy Pooler, the lead author, revealed that molecules such as potassium chloride, glutamate or an AMPA receptor agonist could release tau from cortical neurons in an active physiological process that is, at least partially, dependent on pre-synaptic vesicle secretion.

The new findings by the scientists indicate that tau has previously unknown roles in biological signaling between cells, in addition to its well-established role in stabilizing microtubules.

“We believe that targeting the release of tau could be explored as a new therapeutic approach for the treatment of Alzheimer’s disease and related tauopathies,” said Hanger. Additional studies are needed in model organisms to test this hypothesis further.

Physiological release of endogenous tau is stimulated by neuronal activity

Amy M Pooler, Emma C Phillips, Dawn HW Lau, Wendy Noble, Diane P Hanger

Read the paper:
http://www.nature.com/embor/journal/vaop/ncurrent/full/embor201315a.html
doi: 10.1038/embor.2013.15
Further information on EMBO reports is available at http://www.nature.com/embor
Media Contacts
Barry Whyte
Head | Public Relations and Communications
barry.whyte@embo.org
Barbara Pauly
Editor
pauly@embo.org
Tel: +49 6221 8891 109
About EMBO
EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to sup-port talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their interna-tional reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Yvonne Kaul | idw
Further information:
http://www.embo.org
http://www.nature.com/embor

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>