Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Different Nerve Cells Develop in the Eye

03.12.2012
Researchers observe development processes in fish embryos with the aid of 4D recordings

Neurobiologists from Heidelberg University’s Centre for Organismal Studies (COS) have gained new insights into how different types of nerve cells are formed in the developing animal. Through specialised microscopes, they were able to follow the development of the neural retina in the eye of living zebrafish embryos.

Using high-resolution three-dimensional time-lapse images the researchers simultaneously observed the division of retinal nerve cells and changes in gene expression. This enabled them to gain insights into the way in which the two processes are linked during eye development and how the number and proportion of different cell types are regulated.

A central question in developmental and regenerative neurobiology concerns the growth processes in animal organisms: How does a growing animal control the generation of the right number of each type and subtype of nerve cell in the brain and what is the relationship between these cells? The retina consists of many different kinds of nerve cells, which are well characterised and common to all vertebrates. Thus, the retina is a particularly good model for studying neuronal development. The researchers studied such retinal developmental processes in living organisms using zebrafish embryos, which are completely transparent and grow rapidly outside their mother.

All retinal cells, which are either excitatory or inhibitory, arise from a relatively small number of apparently homogeneous progenitor cells. These progenitors are able to generate all the different retinal cell types. “It is a challenge to understand how each progenitor cell contributes to the correct number and subtype of nerve cells that compose the final retinal network. Our work contributes to the understanding of how different genes orchestrate neuronal diversity along a progenitor cell lineage, that is the number of cell divisions and types of neurons generated”, says Heidelberg researcher Dr. Lucia Poggi.

To tackle this challenge, Dr. Poggi’s team used different lines of transgenic zebrafish, in which fluorescent reporter proteins highlight the expression of different genes in dividing cells. Working in close cooperation with Dr. Patricia Jusuf of the Australian Regenerative Medicine Institute at Monash University, the researchers found that some particular kinds of excitatory and inhibitory nerve cells tend to be lineally related, i.e. they derive from a common progenitor cell. For the first time, 4D recordings permitted an in vivo analysis of how the generation of particular inhibitory cells is regulated through coordination of cell division mode and gene expression within individual retinal progenitors of excitatory nerve cells.

This study has established a model of how cell lineage influences neuronal subtype specification and neuronal circuitry formation in the native environment of the vertebrate brain. The results were published in the Journal of Neuroscience.

For further information see: http://www.cos.uni-heidelberg.de/index.php/j.wittbrodt/l.poggi?l=_e.

Original publication:
P.R. Jusuf, S. Albadri, A. Paolini, P.D. Currie, F. Argenton, S. Higashijima, W.A. Harris, and L. Poggi: Biasing Amacrine Subtypes in the Atoh7 Lineage through Expression of Barhl2, The Journal of Neuroscience, 3 October 2012, 32(40): 13929-13944; doi: 10.1523/JNEUROSCI.2073-12.2012
Contact:
Dr. Lucia Poggi
Centre for Organismal Studies
Phone: +49 (0)6221 54-6494
lucia.poggi@cos.uni-heidelberg.de
Communications and marketing
Press office, phone: +49 (0)6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de
http://www.cos.uni-heidelberg.de/index.php/j.wittbrodt/l.poggi?l=_e

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>