Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology with proteins

15.09.2015

Göttingen scientists test new method of constructing two-dimensional structures

For over two decades, scientists have been using DNA to design nanomaterials. Researchers from the University of Göttingen and the Medical School Hanover, both in Germany, have now discovered a new method to use proteins to construct two-dimensional webbings. The results were published in the scientific journal Nature Nanotechnology.


Electron micrograph of a rough aluminium surface coated with a regular clathrin webbing (size is approximately 1.5 x 1.5 micrometers).

Foto: Universität Göttingen

The use of proteins in nanotechnology is a largely unexplored area. "However, due to their complex structure, proteins offer many possibilities to develop novel materials with unique properties," explains Dr. Iwan A.T. Schaap from Göttingen University’ Third Institute of Physics.

The protein clathrin is normally involved in the formation of transport vesicles inside cells. The scientists show in their study that clathrin can also be used to form two-dimensional webbings on almost any type of surface. "This could revolutionize the design of biological sensors and biosynthetic reactors," says Dr. Schaap.

After the researchers composed the clathrin-building blocks into a regular hexagonal lattice with a periodicity of only 30 nanometers, they developed a stabilization scheme. "It is essential that the protein structures are robust so that the nanotechnological devices will have a long lifetime and shelf-life," explains Dr. Schaap.

Finally, the researchers showed how the clathrin webbings can be converted into functional devices by the binding of small metallic particles and active biomolecules.

The researchers will continue their work on these novel protein structures with the aim of developing more efficient nanotechnological devices that can be used for sensing applications and the synthesis of biomolecules.

Original publication: Philip N. Dannhauser et al. Durable protein lattices of clathrin that can be functionalized with nanoparticles and active biomolecules. Nature Nanotechnology 2015. Doi: 10.1038/nnano.2015.206.

Contact:
Dr. Iwan A.T. Schaap
Georg-August-Universität Göttingen
Faculty of Physics – III. Physical Institute
Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
Phone +49 551 39-22816
Email: ischaap@gwdg.de

Weitere Informationen:

http://www.iwanschaap.com

Thomas Richter | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>