Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-switches in the cell

02.02.2018

A team with researchers from Freiburg discovered a new mechanism for the regulation of protein synthesis

Mitochondria, best known for their role as cellular power plants, perform numerous vital tasks in the cell. During cell respiration, reactive oxygen species can be formed in mitochondria. If these are present in excess, their high reactivity leads to irreparable damage to important cellular components.


3D-structure of mitochondria in a budding yeast cell. Labeling with a green fluorescent protein shows that mitochondria form a tight tubular network in the cell.

Source: Stefan Jakobs

This so-called oxidative stress is assumed to play a causal role in many diseases and in ageing processes. In low concentrations, however, reactive oxygen species can also act as important second messengers in the cell. Here, specific, so-called redox-active thiols in distinct proteins are modified. This type of oxidative modification is reversible and, like a nano-switch, can regulate the function of a protein.

A German-Polish research team led by Prof. Dr. Bettina Warscheid from the University of Freiburg and Prof. Dr. Agnieszka Chacinska from the Centre of New Technologies in Warsaw/Poland has discovered a new mechanism that enables mitochondria with impaired redox balance to regulate the synthesis of new proteins in the cytoplasm. The mitochondria use reactive oxygen species as signal to slow down the cellular protein synthesis machinery. The study was published in the current issue of the scientific journal "Nature Communications".

Using quantitative mass spectrometry, Dr. Ida Suppanz from Warscheid's research group first determined the redox state of thiols in thousands of proteins of the baker's yeast Saccharomyces cerevisiae. She discovered so far unknown redox-active thiols in components of the ribosomes at which new proteins are synthesized.

Dr. Ulrike Topf from Chacinska’s group observed that increased levels of reactive oxygen species inhibit protein synthesis. Using biochemical and cell biological methods, she showed that damaged mitochondria can signal their metabolic state to the protein synthesis machinery via reactive oxygen species and, thereby, slow down cellular protein synthesis.

It is assumed that the temporary reduction of the protein synthesis rate under oxidative stress has a positive effect on the survival of the cells as it is believed to help to restore cellular homeostasis. This also prevents the cell from synthesizing proteins that cannot be taken up by damaged mitochondria, which, as a consequence, accumulate in the cytoplasm and thus need to be degraded. Researches of Warscheid’s and Chacinska’s teams explained how the cell reacts to such a protein accumulation in 2015 in the journal "Nature" (press release: www.pr.uni-freiburg.de/pm-en/2015/pm.2015-08-13.119-en).

Furthermore, the researchers were able to show that this newly discovered regulatory mechanism does not only exist in yeast, but also in human cells. Knowledge on how dysfunctional mitochondria communicate with other cellular components can help to elucidate the mechanisms of age-related and neurodegenerative diseases in the future.

Bettina Warscheid is head of the department of Biochemistry - Functional Proteomics, Institute of Biology II, and member of the Excellence Cluster BIOSS Centre for Biological Signalling Studies at the University of Freiburg. Ida Suppanz is a postdoctoral fellow in the group of Bettina Warscheid.

Original publication:
Ulrike Topf*, Ida Suppanz*, Lukasz Samluk, Lidia Wrobel, Alexander Böser, Paulina Sakowska, Bettina Knapp, Martyna K. Pietrzyk, Agnieszka Chacinska# & Bettina Warscheid#. Quantitative proteomics identifies redox switches for global translation modulation by mitochondrially produced reactive oxygen species (2018). Nature Communications. DOI: 10.1038/s41467-017-02694-8. (*#These authors contributed equally.)

Kontakt:
Prof. Dr. Bettina Warscheid
Institut für Biologie II
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-2690
E-Mail: bettina.warscheid@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/nano-switches-in-the-ce...

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>