Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multifunctional bacterial microswimmer able to deliver cargo and destroy itself

26.04.2018

The untethered biohybrid microswimmer is able to transport and deliver cargo encapsulated into a guidable red blood cell, while an attached bacterium, one of the most efficient swimmers in nature, acts as a propeller to move it forward. Once it has reached its destination and delivered its cargo, the scientists can destroy the microswimmer using infrared light.

Researchers of the Physical Intelligence Department at the Max Planck Institute for Intelligent Systems in Stuttgart have developed a multifunctional microswimmer built out of two parts with very unique properties: they combine a bacterium, one of the most efficient swimmers in nature, with a red blood cell (RBC), a natural carrier inside the human body.


Electromicroscopic image of a RBC microswimmer

RBCs have extraordinary capabilities: they have high payload efficiency and can easily deform and squeeze through narrow capillaries that are half their sizes. This was the reason why the researchers selected RBCs when they intended to develop a microswimmer that would meet the criteria of high load-bearing capacity and flexibility. Combined with the driving force of bacteria – the motor of the microswimmer – it is possible for it to transport cargo even through narrow channels or gaps.

The researchers have encapsulated the cargo in the red blood cell: firstly, the cancer drug doxorubicin as well as iron nanoparticles, for the scientists to be able to magnetically control the microswimmer. Once it has reached its destination, for example a cancer cell, the tumour's acidic environment attacks the membrane of the red blood cell, making it brittle, with the result that the cancer drug is released. The charged cancer drugs are delivered to the doorstep of the cancer cell, so to speak. Once this task is fulfilled, the researchers can destroy the microswimmer by heating it with infrared light so that it decomposes. More on this below.

“Three things make this microswimmer stand out compared to others”, says Oncay Yasa, who together with Yunus Alapan has been working on building the microswimmer. Their research publication appeared in the Science Robotics Journal on 25th April with the title Soft Erythrocyte-based Bacterial Microswimmers for Cargo Delivery. “First, its deformability is impressive: the microswimmer can squeeze through narrow gaps of only two micrometers, while in itself being around 6 micrometers large.”

“Secondly, the link between the bacterium, the motor, and the RBC, the cargo bay, is very strong due to us utilizing a very strong interaction seen in nature”, Oncay Yasa adds. “We use the protein Avidin, which acts as a snap hook, linking on one side to Biotin sticking out of the membrane of the bacteria and on the other side linking to antibodies (anti-TER-119) covering the RBC. That way, there is no harsh chemical reaction while binding the bacterium to the red blood cell. Rather, it´s more like a moveable snap hook system, which attaches the two parts – with Avidin in the middle. That makes the microswimmer ever more robust and flexible than others.”

“Thirdly”, Yunus Alapan continues, “we loaded the RBC with special molecules that can absorb infrared light. When we apply infrared light from outside, the RBC heats up and destroys itself and the attached bacterium. That solves the problem of what to do once the drugs have been delivered. We need the bacterium to be destroyed right away to avoid its uncontrolled proliferation. We don´t want the body defending itself with an immune reaction.”

One day, the researchers hope to test their invention inside a digestive system or a stomach, but at this point they have to make due with testing their microswimmers under the microscope. “Biohybrid microswimmers offer great potential in future non-invasive medical operations owing to their untethered steerability, high payload, deformation capabilities, and the possibility of destruction – what we call a “termination switch””, says Oncay Yasa.

“The microswimmer we developed demonstrates a unique multi-functionality that has not been observed in other bacterium-driven microswimmers before,” Metin Sitti adds, the Director of the Physical Intelligence Department at the Max Planck Institute for Intelligent Systems, who worked with Alapan and Yasa on the study. “The presented RBC microswimmers are a great step forward in using soft biohybrid microswimmers in clinical applications, though there still exist challenges to be overcome such as immune response.” “Our RBC microswimmer creates the blueprint for the next generation of multimodal, targeted cargo delivery systems.” Alapan concludes.

Co-authors of the paper are also Oliver Schauer and Victor Sourjik from the Max Planck Institute for Terrestrial Microbiology, as well as Joshua Giltinan and Ahmet F. Tabak from the Max Planck Institute for Intelligent Systems.

http://robotics.sciencemag.org/content/3/17/eaar4423

About us
At the Max Planck Institute for Intelligent Systems we aim to understand the principles of Perception, Action and Learning in Intelligent Systems.

The Max-Planck-Institute for Intelligent Systems is located in two cities: Stuttgart and Tübingen. Research at the Stuttgart site of the Max Planck Institute for Intelligent Systems covers small-scale robotics, self-organization, haptic perception, bio-inspired systems, medical robotics, and physical intelligence. The Tübingen site of the institute concentrates on machine learning, computer vision, robotics, control, and the theory of intelligence.

www.is.mpg.de

The MPI-IS is one of the 83 Max Planck Institutes that are part of the Max Planck Society. It is Germany's most successful research organization. Since its establishment in 1948, no fewer than 18 Nobel laureates have emerged from the ranks of its scientists, putting it on a par with the best and most prestigious research institutions worldwide. All Institutes conduct basic research in the service of the general public in the natural sciences, life sciences, social sciences, and the humanities. Max Planck Institutes focus on research fields that are particularly innovative, or that are especially demanding in terms of funding or time requirements. And their research spectrum is continually evolving: new institutes are established to find answers to seminal, forward-looking scientific questions, while others are closed when, for example, their research field has been widely established at universities. This continuous renewal preserves the scope the Max Planck Society needs to react quickly to pioneering scientific developments.

www.mpg.de

Professor Dr. Metin Sitti is the Director of the Physical Intelligence Department at the Max Planck Institute for Intelligent Systems, based in Stuttgart.

Sitti received his BSc and MSc degrees in electrical and electronics engineering from Boğaziçi University in Istanbul in 1992 and 1994, respectively, and his PhD degree in electrical engineering from the University of Tokyo in 1999. He was a research scientist at University of California at Berkeley during 1999 and 2002. During 2002-2016, he was a Professor in the Department of Mechanical Engineering and Robotics Institute at Carnegie Mellon University in Pittsburgh, USA. Since 2014, he is a Director at the Max Planck Institute for Intelligent Systems.

Sitti and his team aim to understand the principles of design, locomotion, perception, learning, and control of small-scale mobile robots made of smart and soft materials. Intelligence of such robots mainly come from their physical design, material, adaptation, and self-organization more than to their computational intelligence. Such physical intelligence methods are essential for small-scale milli- and micro-robots especially due to their inherently limited on-board computation, actuation, powering, perception, and control capabilities. Sitti envisions his novel small-scale robotic systems to be applied in healthcare, bioengineering, manufacturing, or environmental monitoring to name a few.

Dr. Yunus Alapan is a post-doctoral scientist and Humboldt Postdoctoral Research Fellow in the Physical Intelligence Department of the Max Planck Institute for Intelligent Systems in Stuttgart. Dr. Alapan received his BSc and MSc degrees in mechanical engineering from Yildiz Technical University in Istanbul in 2011 and 2012, respectively, and his PhD degree in Mechanical Engineering from the Case Western Reserve University in 2016. Dr. Alapan’s research aims to develop tiny robots at the cellular scale for biomedical applications. He is also building microfluidic organ-on-a-chip platforms that can recapitulate complex disease pathophysiology and biological barriers in the body as a testing ground for micro-robots.

Dr. Alapan won first place in NASA Tech Briefs’ Create the Future Design Contest in the Medical Category in 2014 and Student Technology Prize for Primary Healthcare organized by the Center for Integration of Medicine and Innovative Technology in 2016. His postdoctoral work is being funded by the Alexander von Humboldt Foundation since February 2017.

Oncay Yasa is a Ph.D. Student in the Physical Intelligence Department at the Max-Planck-Institute for Intelligent Systems in Stuttgart. He obtained his bachelor degree in 2012 from the Department of Molecular Biology and Genetics, Middle East Technical University (METU), Turkey. Afterwards, he studied at Bilkent University and conducted research in the field of biomimetic self-assembled macromolecules for regenerative medicine at the National Nanotechnology Research Center (UNAM). He received his master degree (M.Sc.) in 2015 from the Institute of Materials Science and Nanotechnology at Bilkent University. He has been working as a PhD student in the Physical Intelligence Department for almost three years and his research focus is on self-actuated biohybrid microsystems. Yasa wants to combine his knowledge in molecular biology and materials science to create novel biohybrid microswimmers which could be used in drug delivery applications.

Video: Researchers develop multifunctional bacterial microswimmer

Linda Behringer | Max-Planck-Institut für Intelligente Systeme
Further information:
http://www.is.mpg.de

More articles from Life Sciences:

nachricht Scientists first to develop rapid cell division in marine sponges
21.11.2019 | Florida Atlantic University

nachricht Machine learning microscope adapts lighting to improve diagnosis
21.11.2019 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Designer lens helps see the big picture

21.11.2019 | Interdisciplinary Research

Machine learning microscope adapts lighting to improve diagnosis

21.11.2019 | Life Sciences

Soft skin-like robots you can put in your pocket

21.11.2019 | Interdisciplinary Research

VideoLinks
Science & Research
Overview of more VideoLinks >>>