Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse gene suppresses Alzheimer's plaques and tangles

13.11.2009
Protein reduces levels of amyloid beta and tau hyperphosphorylation, 2 hallmarks of Alzheimer's

Investigators at Burnham Institute for Medical Research (Burnham) and colleagues have identified a novel mouse gene (Rps23r1) that reduces the accumulation of two toxic proteins that are major players in Alzheimer's disease: amyloid beta and tau.

The amyloid and tau lowering functions of this gene were demonstrated in both human and mouse cells. Amyloid beta is responsible for the plaques found in the brains of Alzheimer's patients. Tau causes the tangles found within patients' brain cells. The study was published in the journal Neuron on November 12. These findings could lead to new treatments for Alzheimer's disease.

Scientists throughout the world are searching for ways to reduce the levels of these two proteins as a means of treating Alzheimer's, so finding a gene that can control the amount of both proteins is particularly important. Overproduction of amyloid beta and its accumulation within senile plaques in the brain and the formation of abnormal tau tangles (neurofibrillary tangles composed of hyperphosphorylated tau protein) are major causes of disrupted brain function in Alzheimer's disease.

Hauxi Xu, Ph.D., professor and acting director of the Neurodegenerative Disease Research program at Burnham, collaborated with Nobel laureate Paul Greengard, Ph.D., of the Laboratory of Molecular and Cellular Neuroscience at The Rockefeller University, Stanley Cohen, Ph.D., of the Department of Genetics at Stanford University School of Medicine, Limin Li, Ph.D., of Functional Genetics, Inc., and with researchers from Xiamen University, to demonstrate that the RPS23R1 protein, which is encoded by the gene, triggers a signaling pathway within brain cells that inhibits a protein called GSK-3 (glycogen synthase kinase-3), which regulates both amyloid beta generation and tau phosphorylation (required for tangle formation).

The team also found that the Rps23r1 gene, whose human counterpart has not yet been identified, was created through a process called retroposition, in which a gene is duplicated through the reverse transcription (or reading) of mRNA and the duplicate is placed in a different location in the cell's DNA. Although most retroposition events result in non-functional duplicates (called pseudogenes) , in rare cases, retroposed genes, like Rps23r1, can become functional.

"From the point of view of treating Alzheimer's disease, if we can express the mouse gene in human brain cells, we may be able to control the buildup of amyloid beta and tau neurofibrillary tangles," said Dr. Xu. "From an evolutionary point of view, we have found an example of a retroposed gene that took on a completely new function."

Dr. Xu and colleagues used a technology called random homozygous gene perturbation to search for genes that regulate amyloid beta generation. This allowed the team to identify the Rps23r1 gene and found that the RPS23R1 protein it encodes can interact with a protein called adenylate cyclase that stimulates a second protein called protein kinase A, which inhibits GSK-3 activity. The effects of RPS23R1 on reducing amyloid beta levels and tau phosphorylation were corroborated in a transgenic Alzheimer's disease mouse model. The team subsequently determined that Rps23r1 is a reverse-transcribed version of the mouse ribosomal protein S23 (Rps23) gene, which is nearly identical to the human Rps23 gene.

About Burnham Institute for Medical Research

Burnham Institute for Medical Research is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham, with operations in California and Florida, is one of the fastest-growing research institutes in the country. The institute ranks among the top four institutions nationally for NIH grant funding and among the top organizations worldwide for its research impact. For the past decade (1999-2009), Burnham ranked first worldwide in the fields of biology and biochemistry for the impact of its research publications (defined by citations per publication), according to the Institute for Scientific Information.

Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is especially known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit public benefit corporation.

Josh Baxt | EurekAlert!
Further information:
http://www.burnham.org

More articles from Life Sciences:

nachricht Novel carbon source sustains deep-sea microorganism communities
18.09.2018 | King Abdullah University of Science & Technology (KAUST)

nachricht New insights into DNA phase separation
18.09.2018 | Ulsan National Institute of Science and Technology (UNIST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

World's first passive anti-frosting surface fights ice with ice

18.09.2018 | Materials Sciences

A novel approach of improving battery performance

18.09.2018 | Materials Sciences

Scientists use artificial neural networks to predict new stable materials

18.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>