Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moulds produce plant growth hormone

09.02.2018

Kiel research team describes the auxin synthesis mechanisms in the fungus Neurospora crassa for the first time

Plants, bacteria and various fungi produce a specific group of hormones known as auxins. Together with other hormones, they cause plant cells to stretch and thus, for example, the rapid growth of young shoots. The manner in which plants produce these substances has been intensively studied for decades, and is accordingly described in great detail. In contrast, how this biosynthesis takes place in fungi has hardly been studied to date.


The structural prediction of the enzymes involved led the researchers to suspect that Neurospora crassa is able to produce auxins.

Image: Prof. Frank Kempken/ Puspendu Sardar


The suppression of auxin production led to a significant reduction in spore formation (see image: B./top right).

Photo: Prof. Frank Kempken / Puspendu Sardar

We already know that some species of fungi which are plant pests are able to produce auxins, which trigger the growth of harmful tissue in their host plants. Now, for the first time, Professor Frank Kempken, head of the Department of Genetics and Molecular Biology at Kiel University, together with his working group, has described the mechanism by which the mould Neurospora crassa produces auxins. The Kiel researchers have also shown that fungi which are not harmful organisms are also able to make these growth hormones. Their findings have now been published in the scientific journal PLoS One.

As part of his dissertation, Puspendu Sardar, a doctoral researcher in Kempken's working group, initially compared the genetic building blocks of the fungus with those of other organisms. This enabled the identification of a number of genes occurring equally both in plants and in Neurospora crassa, which could possibly also trigger the formation of auxin in the mould.

Sardar subsequently developed a bioinformatic model to theoretically predict the structure of the enzymes involved in producing auxins in the mould. "We found that the genes involved in the formation of growth hormones in plants are present in almost all fungi. Therefore, Neurospora crassa should theoretically also be able to produce auxins," explained Kempken, a member of the priority research area "Kiel Life Science" at Kiel University.

In the next step, the Kiel researchers examined whether the identified genes also have the predicted effect in living organisms. To do so, they switched off specific individual genes in genetically-modified mutants of the fungus, to determine their function experimentally. With this method, they were unable to determine an effect at first, until it became clear that the fungus has three alternative ways of producing auxins.

The research team then switched off several genes in combination, in order to block the redundant mechanisms. Sure enough, the auxin concentration in these fungal mutants then dropped sharply. "The biosynthesis mechanism we have described suggests that auxin also fulfils a biological function in fungi which are not plant pests," emphasised Kempken.

However, what role the growth hormones could play remains unclear. The researchers at Kiel University have now provided an initial indication, with their discovery that auxin affects reproduction in Neurospora crassa: the experimentally-suppressed hormone production also led to a significant decrease in the sporulation (spore formation) of the fungus. In addition, it is currently being discussed whether Neurospora crassa may live in a symbiotic relationship with conifers. The Kiel research team’s findings thus form a basis for future determination of the biological function of auxin formation in fungi, and possibly also to discover related interactions of fungi and plants.

Photos are available to download:
http://www.uni-kiel.de/download/pm/2018/2018-027-1.jpg
The structural prediction of the enzymes involved led the researchers to suspect that Neurospora crassa is able to produce auxins.
Image: Prof. Frank Kempken/ Puspendu Sardar

http://www.uni-kiel.de/download/pm/2018/2018-027-2.jpg
The suppression of auxin production led to a significant reduction in spore formation (see image: B./top right).
Photo: Prof. Frank Kempken / Puspendu Sardar

Original publication:
Puspendu Sardar & Frank Kempken (2018): Characterization of indole-2-pyruvic acid pathway-mediated biosynthesis of auxin in Neurospora crassa. PLoS One
https://doi.org/10.1371/journal.pone.0192293

Contact:
Prof. Frank Kempken
Department of Genetics and Molecular Biology,
Botanical Institute and Botanical Gardens, Kiel University
Tel.: +49 (0)431-880-4274
E-mail: fkempken@bot.uni-kiel.de

Weitere Informationen:

http://www.uni-kiel.de/Botanik/Kempken/fbkem.shtml Department of Genetics and Molecular Biology, Botanical Institute and Botanical Gardens, Kiel University
http://www.kls.uni-kiel.de Priority research area "Kiel Life Science“, Kiel University

Dr. Boris Pawlowski | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Rising water temperatures could endanger the mating of many fish species
03.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Moss protein corrects genetic defects of other plants
03.07.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>