Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some motor proteins cooperate better than others

10.01.2014
Rice University researchers view competition, cooperation among motors in live cells

Rice University researchers have engineered cells to characterize how sensitively altering the cooperative functions of motor proteins can regulate the transport of organelles.


Scientists at Rice University regulated the size of vesicular organelles called peroxisomes and the density of protein motors on their surfaces to analyze how the motors cooperate as they move the vesicles inside cells. The PEX 3/FKBP receptors, when incubated with rapalog, allow transiently expressed kinesin and myosinVa motors to be coupled to vesicle surfaces via FRB protein fusions. Once coupled to the vesicles, the motors pull them along cytoskeleton filaments (bottom). (Credit: Diehl Lab/Rice University)

The study, by the Rice lab of bioengineer and chemist Michael Diehl, compared the collective behaviors of kinesin-1 and myosinVa in living cells to determine how these motor proteins cooperate as they move vesicles and organelles along intracellular highways formed from cytoskeletal filaments. These transport processes are critical to numerous developmental and signaling functions within cells, and breakdowns in motor functions are also implicated in several human diseases.

The work appears this week in the Proceedings of the National Academy of Sciences.

Diehl and his colleagues at Rice’s BioScience Research Collaborative, including Rice postdoctoral researchers Anand Radhakrishan and Artem Efremov and graduate student David Tsao, compared the collective responses of the motor proteins to variations in motor numbers and cargo sizes.

They began with a good understanding of the collective pulling power of kinesin motors. Kinesin is a type of protein that binds to and transports cargoes by walking along cytoskeletal filaments called “microtubules.” In previous experiments, they engineered multiple motor systems that were anchored to polystyrene beads as an experimental cargo, but this time decided to engineer organelles called “peroxisomes” within living cells for these analyses.

“Our earlier work was detailed and very precise, but the central limitation was simply that the motors were not transporting a real cargo,” Diehl said. In contrast to rigid beads, many organelles like peroxisomes have fluid-like lipid membranes. Motors attached to their surfaces will therefore interact in ways that are difficult to recapitulate using plastic beads.

“The physical environment inside a living cell is also difficult to emulate during in-vitro experiments,” he said. “This could also have an appreciable impact on how motors cooperate to transport their cargoes.”

Using genetically engineered COS cells, the team coupled motor proteins to peroxisomes via a certain type of protein switch. They regulated the expression of these protein switch genes in combination with a second gene that allowed them to tune the final density of motors on the surfaces of peroxisomes as well as the distributions of peroxisome sizes.

The genetic-level controls allowed the group to evaluate how the collective behaviors of kinesin and myosinVa motors responded to changes in motor levels and size-dependent forces imposed on the peroxisomes by the cytoplasm. In contrast to behaviors found for kinesins, they show that the cargoes move more rapidly when myosinVa levels are altered and that myosin systems are more readily capable of producing the forces necessary to propel large cargos in living cells.

“Kinesins are like racehorses that basically only know how to run fast,” Diehl said. “They don’t like to work together in teams to transport cargos, and usually one kinesin is left doing the work of transporting a cargo on its own. MyosinVa motors, however, are more like stagecoach horses. If you add more horses, you get more force production. You get more speed. This distinction is important, since it suggests that collective functions of myosinVa can be regulated more sensitively than kinesins.”

Kinesin and myosinVa are bound simultaneously to the surfaces of many organelles, Diehl said. The collective force-producing capacities and responses of cargo transport to variation in motor copy number will influence the trafficking of cargoes to different regions of cells. “Cells needs to be able to regulate that competition, and so it may be useful to have one motor, kinesin, that’s strong individually but not capable of cooperating, and another motor that might be weak individually but have a strong cooperative effect,” he said. “It means all the fine tuning can take place on one side.”

The overall results open a new window into cellular mechanisms, Diehl said. “Now that we’re able to probe detailed relationships between motor type, ratio, cargo size and force, we can start to examine more complicated collective and regulatory behaviors directly,” he said. “We hope to recapitulate scenarios where multiple normal motors are bound to the surfaces of cargoes simultaneously with motor mutants that have been associated with neurodegenerative diseases. This way, we can precisely examine how these mutants perturb intracellular transport pathways.”

Co-authors of the paper include Carol Bookwalter, a staff member, and Kathleen Trybus, a professor of molecular physiology and biophysics at the University of Vermont.

The Welch Foundation and the National Institutes of Health supported the research.

Jeff Falk | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>