Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than just a DNA repair deficiency syndrome – impaired acetylation in Cockayne syndrome B

30.08.2018

By studying the skin phenotype of the hereditary disease Cockayne syndrome researchers at the IUF and HHU Düsseldorf have found a mechanism which can prevent the loss of subcutaneous fat, i.e. one of the cardinal symptoms of Cockayne syndrome. This study was now published in “Science Translational Medicine”.

The Cockayne syndrome is a very rare hereditary disease, which can lead among others to dwarfism, neurological impairment, premature aging and a shortened life span. Skin symptoms include a striking sensitivity to UV rays and a dramatic loss of subcutaneous fat.


The HDAC inhibitor SAHA rescues the skin phenotype of CSB-deficient mice

IUF

The disease is caused in 80 % of the cases by a mutation in the CSB gene. There is no curative treatment. The CSB protein is well known for its role in DNA repair and the Cockayne syndrome therefore usually described as a DNA repair deficiency syndrome. This view, however, does not explain the diverse clinical phenotype of the patients and hence, the CSB protein most likely serves important biological functions beyond DNA repair.

A study of the IUF – Leibniz Research Institute for Environmental Medicine and the Heinrich Heine University Düsseldorf (HHU), Germany, now shows for the first time that the CSB protein is not only present in the nucleus but also at the centrosome of the cell where it enhances acetylation (a certain modification) of α-Tubulin (a protein which forms routes of transportation in the cell) and thereby regulates autophagy (the degradation of cellular material in the cell fluid).

If the protein is not able to fulfill this task, an imbalance in protein acetylation occurs. Administration of the histone deacetylase inhibitor SAHA, which inhibits a certain protein family in reversing acetylation, was able to restore this balance. Of note, the loss of subcutaneous fat, i.e. a hallmark of Cockayne syndrome B, could also be restored by SAHA in the mouse model.

These results, which have been generated across several species including nematodes, mice and human skin cells, were now published in “Science Translational Medicine”. Future studies will assess if the HDAC inhibitor SAHA, which is a FDA approved drug for treating certain forms of cutaneous T cell lymphoma, is also suitable for the treatment of patients with Cockayne syndrome.

“More and more biological functions beyond DNA repair are being discovered for proteins, which were originally described as DNA repair enzymes. Examples are the CSB protein but also the XPA protein which causes a very severe subtype of Xeroderma pigmentosum”, says Prof. Jean Krutmann, director of the IUF. “This paradigm shift might allow us to identify new strategies for the treatment of these incurable diseases”.

The investigations with the nematodes were conducted by a liaison group between the IUF and the Central Institute of Clinical Chemistry and Laboratory Medicine of the Heinrich Heine University in Düsseldorf, Germany, which is led by Dr. Natascia Ventura.

About the IUF
The IUF – Leibniz Research Institute for Environmental Medicine investigates the molecular mechanisms through which particles, radiation and environmental chemicals harm human health. The main working areas are environmentally induced aging of the cardiopulmonary system and the skin as well as disturbances of the nervous and immune system. Through development of novel model systems the IUF contributes to the improvement of risk assessment and the identification of novel strategies for the prevention / therapy of environmentally induced health damage.
More information: http://www.iuf-duesseldorf.com.
The IUF is part of the Leibniz Association: http://www.leibniz-gemeinschaft.de/en/home.

Contact
Christiane Klasen, Personal Assistant to the institute’s Director
IUF – Leibniz Research Institute for Environmental Medicine
Auf’m Hennekamp 50
40225 Düsseldorf
Germany
Email: Christiane.Klasen@IUF-Duesseldorf.de
Phone: +49 (0)211 3389 216

Originalpublikation:

Majora M, Sondenheimer K, Knechten M, Uthe I, Esser C, Schiavi A, Ventura N, Krutmann J: HDAC inhibition improves autophagic and lysosomal function to prevent loss of subcutaneous fat in a mouse model of Cockayne syndrome. Sci Transl Med 10: eaam7510, 2018. doi: 10.1126/scitranslmed.aam7510
https://www.doi.org/10.1126/scitranslmed.aam7510

Christiane Klasen | idw - Informationsdienst Wissenschaft
Further information:
http://www.iuf-duesseldorf.de

Further reports about: DNA DNA repair acetylation biological functions mouse model skin

More articles from Life Sciences:

nachricht Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | ETH Zurich

nachricht New molecular blueprint advances our understanding of photosynthesis
15.02.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>