Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More complex biological systems evolve more freely

19.12.2017

Interactions between mutations lead to unexpected result | Study published in eLife

Our genes (aka. the genotype) determine our characteristics (aka. the phenotype). Evolution acts on changes in the phenotype, which occur when mutations change the underlying genotype. But what changes to the phenotype can be produced by mutations is not without bounds – ants cannot suddenly grow a trunk, or become the size of an elephant.


First author Mato Lagator is analyzing the phenotype of a sample of E. coli mutants.

IST Austria

Researchers at the Institute of Science and Technology Austria (IST Austria) found that in a gene regulatory system in the bacterium Escherichia coli, the more components that are mutated, the more freely the system can evolve. This is the result of a study published by a team led by Calin Guet and Jonathan Bollback, with first author postdoc Mato Lagator, in eLife.

Freedom to change

The effects of mutations define how a system can change. But when we take a system composed of several components, such as a system that regulates gene expression, what happens when not only a single component is mutated, but several? Does the system have fewer options for change, or more?

The researchers studied this question in a small gene regulatory system in E. coli that consists of two components: a transcription factor, which is a protein that controls the rate of transcription of genetic information from DNA to RNA; and its binding site on the DNA, where the transcription factor binds to start transcription. In this study, the scientists looked at what happens when they mutate each component on its own, and when they mutate both components at the same time.

Somewhat counterintuitively, they found that the system’s evolution is less limited when more components are mutated. “In stark contrast to what I assumed prior to conducting the experiments, if we mutate several components, the system can evolve more freely. This came as quite a surprise to me!” says first author Mato Lagator. The team then looked at why the system can evolve in more directions, compared to its individual components.

When 1+1 does not equal 2

They found that the system evolves more freely because mutations in the two components interact with each other, a phenomenon they call “intermolecular epistasis”. Mato Lagator explains its significance: “Epistasis means that 1+1 does not equal 2, but 3 or 0. Genetically speaking, one point mutation changes the transcription factor so that the phenotype of our gene regulatory system changes by X, and the other point mutation changes the binding site so that the phenotype changes by Y. Now, when both mutations occur together, the phenotype is not simply X+Y, it is different.” This means that mutations interact, giving the whole system more freedom to change and evolve.

So far, our understanding of epistasis has mostly been descriptive, but how the existing molecular mechanisms define the patterns of epistasis has not been understood. In this study, the researchers give a mechanistic understanding of how the mutations in two different molecules interact, explains Mato Lagator: “Most excitingly, we show that – in this gene regulatory system – most of the epistasis arises from the genetic structure of the system. This structure determines how the mutations interact with each other.”

Additional information

Mato Lagator joined IST Austria in 2013 as an ISTFellow in the groups of Călin Guet and Jonathan Bollback (now at University of Liverpool). The postdoc program ISTFellow has meanwhile evolved into ISTplus, a program focusing on the development of targeted and transferrable skills across all scientific disciplines at IST Austria. The next application deadline is March 15th 2018 (see http://ist.ac.at/research/postdoctoral-research/istplus/).

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n°291734.

IST Austria

The Institute of Science and Technology (IST Austria) is a PhD granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor’s or master’s degree in biology, neuroscience, mathematics, computer science, physics, and related areas. See www.ist.ac.at

Source:
Mato Lagator et al: “Regulatory network structure determines patterns of intermolecular epistasis”, elife 2017, DOI: 10.7554/eLife.28921
https://elifesciences.org/articles/28921

Weitere Informationen:

https://elifesciences.org/articles/28921 Link to the article in elife
http://ist.ac.at/research/postdoctoral-research/istplus Postdoc program of IST Austria

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Further reports about: Austria DNA biological systems intermolecular mutations transcription factor

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>