Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monkeys provide reservoir for human malaria in South-east Asia

11.04.2011
Monkeys infected with an emerging malaria strain are providing a reservoir for human disease in South-east Asia, according to research published today.

The Wellcome Trust-funded study confirms that the species has not yet adapted to humans and that monkeys are the main source of infection.

Malaria is a potentially deadly disease, killing over a million people each year. The disease is caused by parasites that are carried by infected mosquitoes and then injected into the bloodstream.

There are five species of malaria parasite that are known to cause disease in humans, of which Plasmodium knowlesi is the most recently identified. Previously thought to only infect monkeys, researchers have shown that human P. knowlesi infections are widely distributed in South-east Asia and that it is a significant cause of malaria in Malaysian Borneo. Until now, it was not clear whether the infection is transmitted from person to person or passed over from infected monkeys.

Researchers led by Professor Balbir Singh at the Malaria Research Centre, University Malaysia Sarawak, collaborating with Sarawak State Health Department, St George's University of London and the London School of Hygiene and Tropical Medicine, examined blood samples from 108 wild macaques from different locations around the Sarawak division in Malaysian Borneo. Their results reveal that 78 per cent were infected with the P. knowlesi species of malaria parasite, and many were infected with one or more of four other species of monkey malaria parasites that have not yet been found in humans

By comparing the molecular identity of the parasites from monkeys and those isolated from patients with knowlesi malaria, the team were able to build a picture of the evolutionary history of the parasite and its preferred host. Their analysis reveals that transmission of the knowlesi species is more common amongst wild monkeys, than from monkeys to humans, and that monkeys remain the dominant host.

"Our findings strongly indicate that P. knowlesi is a zoonosis in this area, that is to say it is passed by mosquitoes from infected monkeys to humans, with monkeys acting as a reservoir host," explains Professor Singh. "However, with deforestation threatening the monkeys' habitat and increases in the human population, it's easy to see how this species of malaria could switch to humans as the preferred host. This would also hamper current efforts aimed at eliminating malaria."

Based on the molecular data, the researchers estimate that the knowlesi malaria species evolved from its ancestral species between 98 000 and 478 000 years ago. This predates human settlement in the area, meaning that monkeys are most likely to have been the initial host for the parasite when the species first emerged. This estimate also indicates that the species is as old as, or older than, the two most common human malaria parasites, P. falciparum and P. vivax.

The study is published today in the journal 'PLoS Pathogens'.

Contact
Jen Middleton
Media Officer, Wellcome Trust
T 020 7611 7262
M 07534 143 849
E j.middleton(at)wellcome.ac.uk
Reference
Lee K-S et al. Plasmodium knowlesi: reservoir hosts and tracking the emergence in humans and macaques. PLoS Pathogens 2011 [epub ahead of print]

About the Wellcome Trust

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust's breadth of support includes public engagement, education and the application of research to improve health. It is independent of both political and commercial interests.

About the London School of Hygiene & Tropical Medicine

The London School of Hygiene & Tropical Medicine (LSHTM) is a renowned research-led postgraduate medical school. Its mission is to contribute to the improvement of health worldwide through the pursuit of excellence in research, postgraduate teaching and advanced training in national and international public health and tropical medicine, and through informing policy and practice in these areas. Part of the University of London, the School is the largest institution of its kind in Europe with a remarkable depth and breadth of expertise encompassing many disciplines associated with public health.

About St George's, University of London

St George’s, University of London (SGUL), established in 1733, is distinctive as the UK's only independent medical and healthcare higher education institution. It benefits from strong links with the healthcare profession, including a shared site with St George's Healthcare NHS Trust in Tooting, south-west London.

SGUL is dedicated to the education and training of doctors, nurses, midwives, physician's assistants, paramedics, physiotherapists, radiographers, social workers, healthcare and biomedical scientists. It attracts around 6000 students, some of whom are taught in conjunction with Kingston University.

Research at SGUL has a UK and international focus and aims to improve prevention, diagnosis and treatment of disease in areas including infection and immunity, heart disease and stroke, and cell signalling. It also aims to enhance understanding of public health and epidemiology, clinical genetics, and social care sciences.

Journal information

Lee K-S et al. Plasmodium knowlesi: reservoir hosts and tracking the emergence in humans and macaques. PLoS Pathogens 2011 [epub ahead of print]

Resni Mona | Research asia research news
Further information:
http://www.unimas.my
http://www.researchsea.com

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>