Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular switches for research into diseases: Leibniz IPHT Jena coordinates European network

07.01.2019

Molecular logic switches are chemical compounds that operate like electronic circuits in computers: They process information into a logical response. In a project coordinated by the Leibniz Institute of Photonic Technology (Leibniz IPHT) in Jena, an international team of scientists is investigating the fundamental properties of these molecules and whether they can be used to diagnose diseases in the future. The European Union funds the project with more than 3.5 million euros over the next four years.

In the project "Logic Lab - Molecular logic lab-on-a-vesicle for intracellular diagnostics", scientists from various disciplines are investigating how dye molecules can be combined to form new logical gates. They hope to be able to use them to detect cell dysfunctions and thus diagnose the onset of diseases such as arteriosclerosis earlier than before.


Researcher Ying Zhang from Leibniz-IPHT uses a spectroscopic setup to investigate time-resolved processes in molecules that are triggered by light.

Sven Döring/ Leibniz-IPHT

From April 2019, 14 international doctoral students will be working on the topic at nine universities, research institutions and companies in Germany, Ireland, the Netherlands, Poland and Slovakia. The aim of the Innovative Training Network (ITN) is to train highly qualified young researchers through professional exchange, intensive scientific training and the acquisition of nontechnical skills.

How do molecules calculate?

Molecular logic gates are mostly organic molecules that react to physical or chemical inputs and generate an output from them - for example by fluorescing. In medical diagnostics, they could quickly and easily detect disease-typical substances or selectively destroy tumour cells with the aid of light.

Such molecular gates are rare and their application in medicine has been little researched. One reason for this is that they are so far only available for a few specific inputs, e.g. for pH and the concentration of sodium ions. The questions in medical diagnostics are more complex and the known molecules are usually not suitable for use in biological samples.

"Our goal is to adapt the molecular logic gates for applications in biological environments and cells," explains Prof. Benjamin Dietzek, who coordinates the "Logic Lab" project at Leibniz IPHT. The researchers want to use liposomes - liquid filled vesicles having a lipid bilayer shell. " In the vesicles we integrate several molecular switches for different inputs.

We hope to use this mini-laboratory to detect and analyze different biological signalling and messenger substances in parallel. We then want to test the system on living cells," said Dietzek. One advantage of this method is that the mini-labs can be assembled as if they were a modular system.

Better understanding of the onset of arteriosclerosis

The research team sees a medical application in the diagnosis of endothelial dysfunction. Endothelial cells, which cover the inner wall of our blood vessels, regulate blood pressure using signalling and messenger substances such as nitric oxide and calcium ions. If the balance of these substances is disturbed in the long term, a malfunction of the cells occurs, which is presumably responsible for the onset of the chronic disease arteriosclerosis.

The mini-laboratory is intended to detect deviations in the concentration of substances in the cells and thus enable early diagnosis of endothelial dysfunction. This would make it possible to initiate suitable therapeutic procedures that prevent the deposition of life-threatening plaques in the blood vessels and ultimately minimise the risk of a heart attack or stroke.

In order to carry out the necessary fundamental research for this complex project, experts from the fields of spectroscopy, chemistry, microfluidics and experimental medical therapy are working closely together in the "Logic Lab" project. "To ensure that our research results can be applied in medical research in the future, we involve users and technology companies right from the start," explains Prof. Benjamin Dietzek.

The European Union is funding the "Logic Lab" project (Grant Agreement Number 813920) as part of the Horizon 2020 Marie Skłodowska-Curie Innovative Training Network for four years with a total of more than 3.5 million euros.

Open Positions:
http://logiclab-itn.eu

Wissenschaftliche Ansprechpartner:

Coordinator:
Prof. Dr. Benjamin Dietzek
Leibniz Institute of Photonic Technology
Albert-Einstein-Str. 9
07745 Jena
Germany
Benjamin.dietzek@leibniz-ipht.de

Network Management:
Dr. Anja Schulz
Leibniz Institute of Photonic Technology
Albert-Einstein-Str. 9
07745 Jena
Germany
Anja.schulz@leibniz-ipht.de
+49 3641 206 428

Weitere Informationen:

http://logiclab-itn.eu

Lavinia Meier-Ewert | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New image of a cancer-related enzyme in action helps explain gene regulation
05.06.2020 | Penn State

nachricht Protecting the Neuronal Architecture
05.06.2020 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Restoring vision by gene therapy

Latest scientific findings give hope for people with incurable retinal degeneration

Humans rely dominantly on their eyesight. Losing vision means not being able to read, recognize faces or find objects. Macular degeneration is one of the major...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New image of a cancer-related enzyme in action helps explain gene regulation

05.06.2020 | Life Sciences

Silicon 'neurons' may add a new dimension to computer processors

05.06.2020 | Physics and Astronomy

Protecting the Neuronal Architecture

05.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>