Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular switches for research into diseases: Leibniz IPHT Jena coordinates European network

07.01.2019

Molecular logic switches are chemical compounds that operate like electronic circuits in computers: They process information into a logical response. In a project coordinated by the Leibniz Institute of Photonic Technology (Leibniz IPHT) in Jena, an international team of scientists is investigating the fundamental properties of these molecules and whether they can be used to diagnose diseases in the future. The European Union funds the project with more than 3.5 million euros over the next four years.

In the project "Logic Lab - Molecular logic lab-on-a-vesicle for intracellular diagnostics", scientists from various disciplines are investigating how dye molecules can be combined to form new logical gates. They hope to be able to use them to detect cell dysfunctions and thus diagnose the onset of diseases such as arteriosclerosis earlier than before.


Researcher Ying Zhang from Leibniz-IPHT uses a spectroscopic setup to investigate time-resolved processes in molecules that are triggered by light.

Sven Döring/ Leibniz-IPHT

From April 2019, 14 international doctoral students will be working on the topic at nine universities, research institutions and companies in Germany, Ireland, the Netherlands, Poland and Slovakia. The aim of the Innovative Training Network (ITN) is to train highly qualified young researchers through professional exchange, intensive scientific training and the acquisition of nontechnical skills.

How do molecules calculate?

Molecular logic gates are mostly organic molecules that react to physical or chemical inputs and generate an output from them - for example by fluorescing. In medical diagnostics, they could quickly and easily detect disease-typical substances or selectively destroy tumour cells with the aid of light.

Such molecular gates are rare and their application in medicine has been little researched. One reason for this is that they are so far only available for a few specific inputs, e.g. for pH and the concentration of sodium ions. The questions in medical diagnostics are more complex and the known molecules are usually not suitable for use in biological samples.

"Our goal is to adapt the molecular logic gates for applications in biological environments and cells," explains Prof. Benjamin Dietzek, who coordinates the "Logic Lab" project at Leibniz IPHT. The researchers want to use liposomes - liquid filled vesicles having a lipid bilayer shell. " In the vesicles we integrate several molecular switches for different inputs.

We hope to use this mini-laboratory to detect and analyze different biological signalling and messenger substances in parallel. We then want to test the system on living cells," said Dietzek. One advantage of this method is that the mini-labs can be assembled as if they were a modular system.

Better understanding of the onset of arteriosclerosis

The research team sees a medical application in the diagnosis of endothelial dysfunction. Endothelial cells, which cover the inner wall of our blood vessels, regulate blood pressure using signalling and messenger substances such as nitric oxide and calcium ions. If the balance of these substances is disturbed in the long term, a malfunction of the cells occurs, which is presumably responsible for the onset of the chronic disease arteriosclerosis.

The mini-laboratory is intended to detect deviations in the concentration of substances in the cells and thus enable early diagnosis of endothelial dysfunction. This would make it possible to initiate suitable therapeutic procedures that prevent the deposition of life-threatening plaques in the blood vessels and ultimately minimise the risk of a heart attack or stroke.

In order to carry out the necessary fundamental research for this complex project, experts from the fields of spectroscopy, chemistry, microfluidics and experimental medical therapy are working closely together in the "Logic Lab" project. "To ensure that our research results can be applied in medical research in the future, we involve users and technology companies right from the start," explains Prof. Benjamin Dietzek.

The European Union is funding the "Logic Lab" project (Grant Agreement Number 813920) as part of the Horizon 2020 Marie Skłodowska-Curie Innovative Training Network for four years with a total of more than 3.5 million euros.

Open Positions:
http://logiclab-itn.eu

Wissenschaftliche Ansprechpartner:

Coordinator:
Prof. Dr. Benjamin Dietzek
Leibniz Institute of Photonic Technology
Albert-Einstein-Str. 9
07745 Jena
Germany
Benjamin.dietzek@leibniz-ipht.de

Network Management:
Dr. Anja Schulz
Leibniz Institute of Photonic Technology
Albert-Einstein-Str. 9
07745 Jena
Germany
Anja.schulz@leibniz-ipht.de
+49 3641 206 428

Weitere Informationen:

http://logiclab-itn.eu

Lavinia Meier-Ewert | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>