Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular switches for research into diseases: Leibniz IPHT Jena coordinates European network

07.01.2019

Molecular logic switches are chemical compounds that operate like electronic circuits in computers: They process information into a logical response. In a project coordinated by the Leibniz Institute of Photonic Technology (Leibniz IPHT) in Jena, an international team of scientists is investigating the fundamental properties of these molecules and whether they can be used to diagnose diseases in the future. The European Union funds the project with more than 3.5 million euros over the next four years.

In the project "Logic Lab - Molecular logic lab-on-a-vesicle for intracellular diagnostics", scientists from various disciplines are investigating how dye molecules can be combined to form new logical gates. They hope to be able to use them to detect cell dysfunctions and thus diagnose the onset of diseases such as arteriosclerosis earlier than before.


Researcher Ying Zhang from Leibniz-IPHT uses a spectroscopic setup to investigate time-resolved processes in molecules that are triggered by light.

Sven Döring/ Leibniz-IPHT

From April 2019, 14 international doctoral students will be working on the topic at nine universities, research institutions and companies in Germany, Ireland, the Netherlands, Poland and Slovakia. The aim of the Innovative Training Network (ITN) is to train highly qualified young researchers through professional exchange, intensive scientific training and the acquisition of nontechnical skills.

How do molecules calculate?

Molecular logic gates are mostly organic molecules that react to physical or chemical inputs and generate an output from them - for example by fluorescing. In medical diagnostics, they could quickly and easily detect disease-typical substances or selectively destroy tumour cells with the aid of light.

Such molecular gates are rare and their application in medicine has been little researched. One reason for this is that they are so far only available for a few specific inputs, e.g. for pH and the concentration of sodium ions. The questions in medical diagnostics are more complex and the known molecules are usually not suitable for use in biological samples.

"Our goal is to adapt the molecular logic gates for applications in biological environments and cells," explains Prof. Benjamin Dietzek, who coordinates the "Logic Lab" project at Leibniz IPHT. The researchers want to use liposomes - liquid filled vesicles having a lipid bilayer shell. " In the vesicles we integrate several molecular switches for different inputs.

We hope to use this mini-laboratory to detect and analyze different biological signalling and messenger substances in parallel. We then want to test the system on living cells," said Dietzek. One advantage of this method is that the mini-labs can be assembled as if they were a modular system.

Better understanding of the onset of arteriosclerosis

The research team sees a medical application in the diagnosis of endothelial dysfunction. Endothelial cells, which cover the inner wall of our blood vessels, regulate blood pressure using signalling and messenger substances such as nitric oxide and calcium ions. If the balance of these substances is disturbed in the long term, a malfunction of the cells occurs, which is presumably responsible for the onset of the chronic disease arteriosclerosis.

The mini-laboratory is intended to detect deviations in the concentration of substances in the cells and thus enable early diagnosis of endothelial dysfunction. This would make it possible to initiate suitable therapeutic procedures that prevent the deposition of life-threatening plaques in the blood vessels and ultimately minimise the risk of a heart attack or stroke.

In order to carry out the necessary fundamental research for this complex project, experts from the fields of spectroscopy, chemistry, microfluidics and experimental medical therapy are working closely together in the "Logic Lab" project. "To ensure that our research results can be applied in medical research in the future, we involve users and technology companies right from the start," explains Prof. Benjamin Dietzek.

The European Union is funding the "Logic Lab" project (Grant Agreement Number 813920) as part of the Horizon 2020 Marie Skłodowska-Curie Innovative Training Network for four years with a total of more than 3.5 million euros.

Open Positions:
http://logiclab-itn.eu

Wissenschaftliche Ansprechpartner:

Coordinator:
Prof. Dr. Benjamin Dietzek
Leibniz Institute of Photonic Technology
Albert-Einstein-Str. 9
07745 Jena
Germany
Benjamin.dietzek@leibniz-ipht.de

Network Management:
Dr. Anja Schulz
Leibniz Institute of Photonic Technology
Albert-Einstein-Str. 9
07745 Jena
Germany
Anja.schulz@leibniz-ipht.de
+49 3641 206 428

Weitere Informationen:

http://logiclab-itn.eu

Lavinia Meier-Ewert | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Tracing the evolution of vision
23.08.2019 | University of Göttingen

nachricht Caffeine does not influence stingless bees
23.08.2019 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>