Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Molecular Force Probe Stretches Molecules, Atom by Atom

30.03.2009
Chemists at the University of Illinois have created a simple and inexpensive molecular technique that replaces an expensive atomic force microscope for studying what happens to small molecules when they are stretched or compressed.

The researchers use stiff stilbene, a small, inert structure, as a molecular force probe to generate well-defined forces on various molecules, atom by atom.

“By pulling on different pairs of atoms, we can explore what happens when we stretch a molecule in different ways,” said chemistry professor Roman Boulatov. “That information tells us a lot about the properties of fleeting structures called transition states that govern how, and how fast, chemical transformations occur.”

Boulatov, research associate Qing-Zheng Yang, postdoctoral researcher Daria Khvostichenko, and graduate students Zhen Huang and Timothy Kucharski describe the molecular force probe and present early results in a paper accepted for publication in Nature Nanotechnology. The paper is to be posted on the journal’s Web site on Sunday (March 29).

Similar to the force that develops when a rubber band is stretched, restoring forces occur in parts of molecules when they are stretched. Those restoring forces contain information about how much the molecule was distorted, and in what direction.

The molecular force probe allows reaction rates to be measured as a function of the restoring force in a molecule that has been stretched or compressed.

This information is essential for developing a chemomechanical kinetic theory that explains how force affects rates of chemical transformations.

Such a theory will help researchers better understand a host of complex phenomena, from the operation of motor proteins that underlie the action of muscles, to the propagation of cracks in polymers and the mechanisms by which living cells sense forces in their surroundings.

“Localized reactions offer the best opportunity to gain fundamental insights into the interplay of reaction rates and molecular restoring forces,” Boulatov said, “but these reactions are extremely difficult to study with a microscopic force probe.”

Microscopic force probes, which are utilized by atomic force microscopes, are much too large to grab onto a single pair of atoms. Measuring microns in size, the probe tips contact many atoms at once, smearing experimental results.

“By replacing microscopic force probes with small molecules like stiff stilbene, we can study the relationship between restoring force and reaction rate for localized reactions,” Boulatov said. “The more accurately we know where our probe acts, the better control we have over the distortion, and the easier it is to interpret the results.”

Using conventional methods, Boulatov and his students first attach stiff stilbene to a molecule they wish to study. Then they irradiate the resulting molecular assembly with visible light. The light causes the stilbene to change from a fully relaxed shape to one that exerts a desired force on the molecule. The chemists then measure the reaction rate of the molecule as a function of temperature, which reveals details of what caused the reaction to accelerate.

One type of chemical transformation the researchers studied is the breaking of one strong (covalent) chemical bond at a time. The experimental results were sometimes counterintuitive.

“Unlike a rubber band, which will always break faster when stretched, pulling on some chemical bonds doesn’t make them break any faster; and sometimes it’s a bond that you don’t pull on that will break instead of the one you do pull,” Boulatov said. “That’s because experiences in the macroscopic world do not map particularly well to the molecular world.”

Molecules do not live in a three-dimensional world, Boulatov said. Molecules populate a multi-dimensional world, where forces applied to a pair of atoms can act in more than three dimensions.

“Even small molecules will stretch and deform in many different ways,” Boulatov said, “making the study of molecular forces even more intriguing.”

Funding was provided by the National Science Foundation, the U.S. Air Force Office of Scientific Research, the American Chemical Society Petroleum Research Fund and the U. of I. The National Center for Supercomputing Applications and the U.S. Department of Defense High-Performance Computing Modernization Program provided computational resources.

James E. Kloeppel | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>