Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular corkscrew

08.11.2011
Scientists from the universities of Zurich and Duisburg-Essen have discovered a specific function of the protein p97/VCP. They demonstrate that the protein repairs DNA breaks like a corkscrew, a repair mechanism that could also prove significant for cancer therapy.

Human genetic material is constantly at risk of injury from the environment. Possible causes of damage include metabolic processes, chemical substances or ionizing radiation, such as X-radiation. Even a low dose of radiation can cause breaks in the DNA double helix. Normally, these DNA breaks are repaired by the body’s own proteins, but they can also cause cancer if the repair is unsuccessful.

Protein as a corkscrew

The protein p97/VCP plays a key role in repairing DNA breaks. The research groups headed by Kristijan Ramadan from the University of Zurich’s Institute of Veterinary Pharmacology and Hemmo Meyer from the University of Duisburg-Essen have discovered that p97/VCP aids DNA repair like a corkscrew. Proteins that accumulate at the break site are initially marked with remnants of the protein ubiquitin. These remnants bind to the p97/VCP protein and are removed like a cork. For the DNA repair to be completed successfully, the precise spatial and temporal removal of the repair proteins from the damage site is crucial.

Uses for cancer therapy

The repair mechanism with p97/VCP and its inhibition could be important for cancer therapy. “By blocking p97/VCP’s corkscrew activities, it should be possible to increase the impact of radio- or chemotherapy,” says veterinary pharmacologist Kristijan Ramadan. Radiation causes extensive, often fatal damage to cancer cell DNA. The therapeutic effect could be improved further if, at the same time, the repair mechanism usually deployed in cancer cells were to be inhibited with p97/VCP. “Maybe the radiation dosage with all its unpleasant side effects could even be reduced,” concludes Ramadan.

Literature:
Mayura Meerang, Danilo Ritz, Shreya Paliwal, Zuzana Garajova, Matthias Bosshard, Pavel Janscak, Ulrich Hübscher, Hemmo Meyer, and Kristijan Ramadan. The ubiquitin selective remodeling factor p97/VCP orchestrates the DNA damage response. Nat Cell Biol. October 23, 2011. doi: 10.1038/ncb2367

Nathalie Huber | Universität Zürich
Further information:
http://www.mediadesk.uzh.ch/

More articles from Life Sciences:

nachricht Identifying the blind spots of soil biodiversity
04.08.2020 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht AI & single-cell genomics
04.08.2020 | Helmholtz Zentrum München - German Research Center for Environmental Health

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>