Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular biologists discover an active role of membrane lipids in health and disease

07.08.2017

All living cells that grow and divide have a constant demand for producing new proteins and new membrane lipids. Some cells of the human body, however, are specialized to secrete tremendous amounts of proteins. Plasma cells, for example, produce antibodies that ward off bacteria and viruses. Another example are cells from the pancreas that manufacture insulin, which is essential for regulating the blood sugar levels. Such cells are known as secretory cells.

The secretory capacity of a cell is controlled by a process known as the unfolded protein response (UPR). A central task of UPR is to detect misfolded proteins, i.e. proteins that do not have the correct shape to do their job. These misfolded proteins are dangerous as they can aggregate with other proteins, form clumps and clog diverse cellular functions.


Both unfolded proteins and aberrant membrane lipid compositions are sensed by Ire1 and can activate the so-called unfolded protein response. This pathway is crucial for the function and survival of secretory cells such as antibody-producing plasma cells.

Credit: Robert Ernst

The UPR can stop this vicious circle arising from the accumulation of misfolded or unfolded proteins by helping to degrade the clumps and by promoting protein refolding. The UPR therefore plays a key role in secretory cells but also protects other cells of the body from the stresses associated with an accumulation of unfolded or misfolded proteins.

But there's a catch: viruses and tumour cells can also exploit the UPR for their own ends, enabling them to grow at a faster rate and to thwart the body's immune response. Moreover, sustained activation of the UPR can drive cells into cell death.

Cells in which the UPR has been activated can produce larger quantities of proteins, but they also become more sensitive - a bit like a finely-tuned racing car. As Robert Ernst explains: 'Whereas a racing car will often fail after completing a hundred superfast laps because the engine has overheated, a tractor (representing a normal body cell) will continue to drive up and down the field for a lot longer, but also a lot slower.' Why these high-performance cells are so much more sensitive was not known up until now.

The team led by Professor Ernst has now solved this puzzle and has described how the UPR senses membrane lipids and responds accordingly. Working in close collaboration with scientists from Goethe University and the Max Planck Institute of Biophysics, both located in Frankfurt, the research team from the Department of Medical Biochemistry and Molecular Biology at Saarland University has identified a novel mechanism that leads to UPR activation and that can trigger long-term stress in cells.

According to this new mechanism, the UPR is activated not only by misfolded proteins, but also by anomalous membrane lipid compositions. Secretory cells are particularly sensitive to these changes, because they have already activated their UPR to produce more proteins and therefore at risk of 'overheating'- just like the racing car engine described above. The study provides a new perspective on the active role of biological membranes may be a game-changer for our understanding of a great variety diseases.

Over the last few years, research work in Japan, Great Britain and the USA has provided growing evidence of the unexpected role played by membrane lipids. In 2011, Peter Walter and David Ron, pioneer in the field of human UPR, had formulated that the relationship between membrane lipids and the UPR remained a central unresolved question in the field. Now, it has been solved.

'In order to boost the production and secretion of proteins, the UPR regulates more than five percent of all human genes,' explains Robert Ernst. 'We now have the conceptual framework to understand why professionally secretory are hypersensitive to changes of their membrane lipids induced by the diet.'

News of the results have spread fast and the high-impact journal Nature Reviews Molecular Cell Biology has launched a commentary to the article that has been published in Molecular Cell.

###

The study Activation of the Unfolded Protein Response by Lipid Bilayer Stress will be published on 17 August 2017 in the journal Molecular Cell. The article has been available online since 6 July from: http://www.sciencedirect.com/science/article/pii/S1097276517304392?via%3Dihub (https://doi.org/10.1016/j.molcel.2017.06.012)

The commentary to this article Reaction to membrane stress by Paulina Strzyz was published online by Nature Reviews Molecular Cell Biology on 21 July 2017 can be found at: http://www.nature.com/nrm/journal/v18/n8/full/nrm.2017.74.html?foxtrotcallback=true (http://dx.doi.org/10.1038/nrm.2017.74)

Further information:
Prof. Dr. Robert Ernst
Tel.: +49 (0)6841 16-47875
E-mail: robert.ernst@uks.eu

Robert Ernst | EurekAlert!

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>