Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model for new generation of blood vessels challenged

02.06.2009
In-growth and new generation of blood vessels, which must take place if a wound is to heal or a tumor is to grow, have been thought to occur through a branching and further growth of a vessel against a chemical gradient of growth factors.

Now a research team at Uppsala University and its University Hospital has shown that mechanical forces are considerably more important than was previously thought. The findings, published today in the journal Nature Medicine, open up a new field for developing treatments.

New generation of blood vessels takes place in normal physiological processes, such as when a wound heals, children grow, or the mucous membrane of the womb is built up to be able to receive a fertilized egg. It is also a crucial mechanism in tumor diseases, rheumatism, and certain eye disorders, for example.

How new generation and in-growth of blood vessels takes place has not been fully understood. It has been assumed that the mechanisms are the same as those that occur in embryonic development, which is probably a great over-simplification. The formation of the vascular system in the fetus takes place in a well-organized and reproducible way, which means that we all have blood vessel systems that look very much the same. On the other hand, new generation of vessels in wound healing and tumor growth, for example, occurs in a chaotic environment where it is difficult to see that there would be well-defined gradients of growth factors, and it has not been possible to find evidence of any.

"Unlike these previous models, our findings show that in wound healing, in-growth of new blood vessels takes place via mechanical forces that pull already existing blood vessels into the wound when it heals," says Pär Gerwins, who directed the study and is a physician and interventional radiologist at Uppsala University Hospital as well as a researcher with the Department of Medical Biochemistry and Microbiology at Uppsala University.

It has long been known that specialized connecting tissue cells, so-called myofibroblasts, wander in and pull the wound together. In the study being published it is shown that this wound contraction governs the in-growth of new blood vessels. Since it is a matter, at least initially, of the expansion of already existent blood vessels that have continuous blood circulation, there is a rapid in-growth of fully functional vessels, which is what we see when a wound heals.

The study not only explains a fundamental biological mechanism but also provides clues for new therapeutic goals in treating various diseases. Since myofibroblasts exist in relatively large numbers in tumors and rheumatic joints, one potential strategy to try to block the contractive capacity of these connective tissue cells. The new model can also partially explain why treatment of tumor diseases with blood-vessel inhibiting substances has not been as successful as was hoped.

Finally, the model can partially explain the mechanism behind the positive effect of "vacuum-assisted wound closure," (VAC). This is a method of treatment for hard-to-heal wounds where an air-tight bandage is applied and then the pressure is reduced in the wound with the aid of suction, which creates a continuous mechanical pull in the underlying tissue.

Blood-vessel-rich wound-healing tissue is thereby generated much more rapidly, which substantially hastens healing. It is hoped that it will now be possible to understand why some wounds do not heal and also to develop new types of wound treatment.

For more information, please contact: Pär Gerwins, phone: +46 (0)18-471 43 66; cell phone: +46 (0)73-984 82 07, e-mail: Par.Gerwins@imbim.uu.se

Read the article on the Nature Medicine home page.

Anneli Waara | idw
Further information:
http://www.vr.se
http://www.nature.com/nm/journal/vaop/ncurrent/abs/nm.1985.html

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>