Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microfluidics: Bubble power

15.03.2012
The latest microfluidic chip can generate microbubbles to break open cells for biochemical analysis

Scientists have made many important discoveries in biology and medicine through studying the internal contents of cells. Some have isolated or identified nucleic acids or proteins with special functions, while others have unravelled the working and regulatory mechanisms underlying biochemical or pharmaceutical components within cells.


Micrographs of GFP-expressing bacteria before and after lysis

Dave Ow and co-workers at the A*STAR Bioprocessing Technology Institute and Institute of High Performance Computing have now developed a novel method to expose the internal contents of cells for biochemical analysis1.

Currently there is a wide range of methods to disintegrate or lyse cell membranes and to release the biomolecules contained within. However, most of these methods can cause denaturation of proteins or interfere with subsequent assaying. Ow and co-workers explored the possibility of using ultrasound in microfluidics to lyse cells. They applied short bursts of ultrasound with periods of rest to prevent the proteins from overheating as a result of dissipation of mechanical energy.

When the rapid changes of pressure generated with ultrasound are applied to a liquid, small bubbles are formed which oscillate in size and generate a cyclic shear stress. These rapidly oscillating bubbles generate a mini shockwave when they implode, which can be strong enough to cause the cell membrane to rupture. The researchers generated microbubbles in the meandering microfluidic channel by introducing a gas via a separate inlet to generate a gas–liquid interface and subsequently applying ultrasound to the system.

As a proof of principle, the researchers tested the performance of their microfluidic device on genetically engineered bacteria and yeast that express the green fluorescent protein. The researchers found that the bacteria are completely disintegrated after only 0.4 seconds of ultrasound exposure (see image). The concentration of DNA released from yeast cells reached a plateau after only one second exposure (which contained six bursts of ultrasound each of 0.154 seconds), indicating that most cells are successfully lysed. Importantly the temperature of the sample was shown not to rise above 3.3 °C. “The large surface to volume ratio of the microfluidic environment means that the small amount of heat that is generated rapidly diffuses away,” says Ow.

The researchers have proposed many ideas for applications. “In collaboration with another institute, we are developing a rapid and sensitive label-free optical method for on-chip detection of bioanalytes from lysed cells,” says Ow. “We also want to modify the device to break more difficult-to-lyse endospores, and to develop a rapid on-chip detection device to counter the threats of bioterrorism.”

The A*STAR-affiliated researchers contributing to this research are from the Bioprocessing Technology Institute and Institute of High Performance Computing.

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>