Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbial signal recognition stems from existing building blocks

15.01.2018

Freiburg biochemists show how evolution combines a nutrient sensor from existing elements

A team led by the Freiburg biochemist Prof. Dr. Susana Andrade has characterized a protein that enables certain microorganisms to recognize and absorb ammonium in their environment. Ammonium is considered a toxin that pollutes ecosystems – but for these bacteria it represents an important nutrient and energy source. The researchers have published their findings in the scientific journal Nature Communications.


Hypothetical extended model of the anammox ammonium sensor protein. Source: Susana Andrade

The element nitrogen is an indispensable building block of all biomolecules and therefore of great importance to all organisms. In addition, some members of the microbial community have specialized in using various nitrogen compounds as energy source for optimal growth. This is especially the case amongst anaerobic ammonium oxidizers:

These bacteria do not require oxygen for their metabolism but instead, convert two important nitrogen compounds, ammonium and nitrite, into nitrogen gas, which accounts for about 80 percent of the earth's atmosphere. Through this reaction, these microorganisms play an important role in the detoxification of nitrogen compounds that are increasingly released into the environment through the use of fertilizers.

Andrade and her team from the Faculty of Chemistry and Pharmacy at the University of Freiburg have identified an unusual protein in such bacteria: Half of it resembles known transport proteins for ammonium ions and the other half belongs to a group of signal transducing proteins.

This led to the suspicion that two building blocks, already existing in nature, had been combined in a modular way to enable a completely new functionality: the detection of ammonium from the environment and subsequent transmission of this information to the cellular signaling networks.

The researchers undertook a comprehensive functional and structural characterization of this novel protein, which also involved working groups from the University Medical Center Freiburg; Radboud University in Nijmegen, The Netherlands; the Russian Academy of Sciences; and the European Molecular Biology Laboratory (EMBL) in Hamburg. As a result, the original assumption was confirmed:

Based on a highly selective ammonium transport protein, evolution has given rise to a new recognition site for the ions, whose occupation leads to conformational changes that are passed on to the signal transducing module. This direct modular coupling offers the prospect of fusing other signal transduction units to the ammonium sensor module to engineer new cellular functionalities.

Susana Andrade heads the molecular biophysics research group at the Institute of Biochemistry, Faculty of Chemistry and Pharmacy at the University of Freiburg and is an associate member of the Freiburg Excellence Cluster BIOSS - Center for Biological Signalling Studies. Dr. Tobias Pflüger, the first author on the publication, has recently completed his PhD in the Andrade working group.

Original publication:
Tobias Pflüger, Camila Hernández, Philipp Lewe, Fabian Frank, Haydyn Mertens, Dmitri Svergun, Manfred W. Baumstark, Vladimir Y. Lunin, Mike S.M. Jetten & Susana L.A. Andrade. 2018. Signaling Ammonium across Membranes through an Ammonium Sensor Histidine Kinase. In: Nature Communications, DOI: 10.1038/s41467-017-02637-3.

Contact:
Prof. Dr. Susana Andrade
Institute of Biochemistry
University of Freiburg
Tel.: 0761/203-8719
email: andrade@bio.chemie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/microbial-signal-recogn...

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure
14.11.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

NIH scientists combine technologies to view the retina in unprecedented detail

14.11.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>