Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbial signal recognition stems from existing building blocks

15.01.2018

Freiburg biochemists show how evolution combines a nutrient sensor from existing elements

A team led by the Freiburg biochemist Prof. Dr. Susana Andrade has characterized a protein that enables certain microorganisms to recognize and absorb ammonium in their environment. Ammonium is considered a toxin that pollutes ecosystems – but for these bacteria it represents an important nutrient and energy source. The researchers have published their findings in the scientific journal Nature Communications.


Hypothetical extended model of the anammox ammonium sensor protein. Source: Susana Andrade

The element nitrogen is an indispensable building block of all biomolecules and therefore of great importance to all organisms. In addition, some members of the microbial community have specialized in using various nitrogen compounds as energy source for optimal growth. This is especially the case amongst anaerobic ammonium oxidizers:

These bacteria do not require oxygen for their metabolism but instead, convert two important nitrogen compounds, ammonium and nitrite, into nitrogen gas, which accounts for about 80 percent of the earth's atmosphere. Through this reaction, these microorganisms play an important role in the detoxification of nitrogen compounds that are increasingly released into the environment through the use of fertilizers.

Andrade and her team from the Faculty of Chemistry and Pharmacy at the University of Freiburg have identified an unusual protein in such bacteria: Half of it resembles known transport proteins for ammonium ions and the other half belongs to a group of signal transducing proteins.

This led to the suspicion that two building blocks, already existing in nature, had been combined in a modular way to enable a completely new functionality: the detection of ammonium from the environment and subsequent transmission of this information to the cellular signaling networks.

The researchers undertook a comprehensive functional and structural characterization of this novel protein, which also involved working groups from the University Medical Center Freiburg; Radboud University in Nijmegen, The Netherlands; the Russian Academy of Sciences; and the European Molecular Biology Laboratory (EMBL) in Hamburg. As a result, the original assumption was confirmed:

Based on a highly selective ammonium transport protein, evolution has given rise to a new recognition site for the ions, whose occupation leads to conformational changes that are passed on to the signal transducing module. This direct modular coupling offers the prospect of fusing other signal transduction units to the ammonium sensor module to engineer new cellular functionalities.

Susana Andrade heads the molecular biophysics research group at the Institute of Biochemistry, Faculty of Chemistry and Pharmacy at the University of Freiburg and is an associate member of the Freiburg Excellence Cluster BIOSS - Center for Biological Signalling Studies. Dr. Tobias Pflüger, the first author on the publication, has recently completed his PhD in the Andrade working group.

Original publication:
Tobias Pflüger, Camila Hernández, Philipp Lewe, Fabian Frank, Haydyn Mertens, Dmitri Svergun, Manfred W. Baumstark, Vladimir Y. Lunin, Mike S.M. Jetten & Susana L.A. Andrade. 2018. Signaling Ammonium across Membranes through an Ammonium Sensor Histidine Kinase. In: Nature Communications, DOI: 10.1038/s41467-017-02637-3.

Contact:
Prof. Dr. Susana Andrade
Institute of Biochemistry
University of Freiburg
Tel.: 0761/203-8719
email: andrade@bio.chemie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/microbial-signal-recogn...

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Modeling predicts blue whales' foraging behavior, aiding population management efforts
18.07.2019 | Oregon State University

nachricht Plant viruses may be reshaping our world
18.07.2019 | Arizona State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

A graphene superconductor that plays more than one tune

18.07.2019 | Physics and Astronomy

Plant viruses may be reshaping our world

18.07.2019 | Life Sciences

First-ever visualizations of electrical gating effects on electronic structure

18.07.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>