Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes hitch a ride inland on coastal fog

24.08.2018

Microorganisms, including potential pathogens, travel from sea to land via fog

Fog can act as a vector for microbes, transferring them long distances and introducing them into new environments. So reports an analysis of the microbiology of coastal fog, recently published in the journal Science of the Total Environment.


Fog on the Namib Desert with inset of related microbes.

Credit: Sarah Evans


The biology of fog: results from coastal Maine and Namib Desert reveal common drivers of fog microbial composition.

Credit: Evans et. al, 2018

Co-author Kathleen Weathers, a Senior Scientist at Cary Institute of Ecosystem Studies, explains, "Fog's role in transporting water and nutrients to coastal areas is well documented. Far less is known about the biology of fog, including the communities of microbes that live in fog droplets, and how they travel between marine and terrestrial ecosystems."

Fog-fed ecosystems

The research team tracked fungal and bacterial communities in fog delivered to two fog-dominated sites: Southport Island, Maine in the United States and the Namib Desert in Namibia. Their aim: to better understand how fog influences the transport of microbes from the Atlantic Ocean into these fog-fed terrestrial ecosystems.

At both sites, samples of fog, clear air, and rain were analyzed to record the variety and abundance of microorganisms present. In Maine, data were collected within 30 meters of the ocean during two field campaigns. In the Namib, data were collected at two sites located 55 kilometers and 50 kilometers away from the coast.

Air was sampled in Maine and the Namib before and after rain, fog, and high wind events to detect changes in airborne microbial composition due to weather conditions. Ocean water - where coastal fog originates - was also sampled. At both sites, bacterial and fungal DNA was extracted from filters; trends within and between sites were then analyzed.

Microbes on the move

Co-lead author Sarah Evans of Michigan State's Kellogg Biological Station explains, "Fog droplets were found to be an effective medium for microbial sustenance and transport. At both sites, microbial diversity was higher during and after foggy conditions when compared to clear conditions."

Marine influences on fog communities were greatest near the coast, but still evident 50 kilometers inland in the Namib Desert. Fog in both Maine and the Namib contained microbes from both soil and ocean sources.

Moisture in fog allows microbes to persist longer than they would in dry aerosols. As a result, fog deposits a greater abundance and diversity of microbes onto the land than deposition by air alone.

Co-lead author M. Elias Dueker of Bard College explains: "When fog rolls in, it can shift the composition of terrestrial airborne microbial communities. And in a fascinating twist, on the journey from the ocean to the land, microbes not only survive, but change during transport. Fog itself is a novel, living ecosystem."

Fog, climate, and health

The authors note the possible health implications of the marine-terrestrial fog connection. Fog at both sites contained pathogenic microbes, including suspected plant pathogens and species known to cause respiratory infections in immune-compromised people. This raises concern about the role that fog could play in transporting harmful microbes.

Dueker explains, "Bacterial and viral aerosols can originate from polluted waterways, such as those contaminated with sewage. When polluted water mixes with air, harmful substances become airborne and spread. These pathogens could also be incorporated in urban fog, increasing their threat to people, plants, and other animals."

"We need a better understanding of fog's role as a vector for microbes, with special attention to pathogens that threaten health," Weathers explains. "Warming sea surface temperatures and altered wind regimes are likely to affect fog distribution in many coastal regions."

The team identified the need for future studies that help predict which microbes are most likely to be transported and deposited by fog. Using traits like spore size and behavior, models could be developed that help forecast harmful fog.

Read the paper online.

###

Funding for this research was provided in part by the John Holden Adams Fund, the National Geographic Society, National Science Foundation, Michigan State's African Studies Center, and the Gordon and Betty Moore Foundation.

Investigators:

Sarah E. Evans - Kellogg Biological Station, Michigan State University
M. Elias Dueker - Bard College and Cary Institute of Ecosystem Studies
Robert Logan - Kellogg Biological Station, Michigan State University
Kathleen C. Weathers - Cary Institute of Ecosystem Studies

Cary Institute of Ecosystem Studies is an independent nonprofit center for environmental research. Since 1983, our scientists have been investigating the complex interactions that govern the natural world and the impacts of climate change on these systems. Our findings lead to more effective management and policy actions and increased environmental literacy. Staff are global experts in the ecology of: cities, disease, forests and freshwater.

Media Contact

Lori M. Quillen
quillenl@caryinstitute.org
845-677-7600 x161

 @CaryInstitute

http://www.caryinstitute.org 

Lori M. Quillen | EurekAlert!

Further reports about: Ecosystem Fog airborne ecosystems microbes pathogens terrestrial

More articles from Life Sciences:

nachricht In depression the brain region for stress control is larger
20.09.2018 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Interfacial engineering core@shell nanoparticles for active and selective direct H2O2 generation
19.09.2018 | Science China Press

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Glacial engineering could limit sea-level rise, if we get our emissions under control

20.09.2018 | Earth Sciences

Warning against hubris in CO2 removal

20.09.2018 | Earth Sciences

Halfway mark for NOEMA, the super-telescope under construction

20.09.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>