Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of mice and men: UNC-led team solves mouse genome dilemma

30.05.2011
Data will help scientists worldwide design better experiments

Laboratory research has always been limited in terms of what conclusions scientists can safely extrapolate from animal experiments to the human population as a whole. Many promising findings in mice have not held up under further experimentation, in part because laboratory animals, bred from a limited genetic foundation, don't provide a good representation of how genetic diversity manifests in the broader human population.

Now, thanks to an in-depth analysis by a team led by Fernando Pardo-Manuel de Villena, PhD, in the UNC Department of Genetics and Gary Churchill, PhD, at The Jackson Laboratory in Bar Harbor, Maine, researchers will be able to use an online resource dubbed the Mouse Phylogeny Viewer to select from among 162 strains of laboratory mice for which the entire genome has been characterized. Phylogeny refers to the connections among all groups of organisms as understood by ancestor/descendant relationships. Pardo-Manuel de Villena is also a member of UNC Lineberger Comprehensive Cancer Center and the Carolina Center for Genome Sciences.

The results of the analysis that make this tool possible were published online today in the journal Nature Genetics.

"The viewer provides scientists with a visual tool where they can actually go and look at the genome of the mouse strains they are using or considering, compare the differences and similarities between strains and select the ones most likely to provide the basis for experimental results that can be more effectively extrapolated to the diverse human population," said Pardo-Manuel de Villena.

"As scientists use this resource to find ways to prevent and treat the genetic changes that cause cancer, heart disease, and a host of other ailments, the diversity of our lab experiments should be much easier to translate to humans," he noted.

He explains that the DNA of a given pair of typical laboratory mouse strains varies in only half of their genome and captures less than 20 percent of the diversity of the entire mouse genome. Historically, biomedical researchers have relied on what are called classical inbred strains of mice in laboratory research. With the advance of genetic science, researchers began to use wild-derived laboratory strains (descendants of captured wild mice that originate from a small number of original ancestors) to try to overcome issues associated with limited genetic diversity. However, scientists' understanding of genetic diversity in mice has – until now – been limited and biased toward the most frequently used strains.

The team compared the genome of a large and diverse sample including 36 strains of wild-caught mice, 62 wild-derived laboratory strains and 100 classical strains obtained from different stocks and different laboratories using the Mouse Diversity array – a technology that maps the entire mouse genome.

Their analysis exponentially increases the data available to geneticists who work with mice, allowing them to statistically impute the whole mouse genome sequence with very high accuracy for hundreds of laboratory mouse strains – leading to much greater precision in the interpretation of existing biomedical data and optimal selection of strains in future experiments.

The Mouse Phylogeny Viewer is available at http://msub.csbio.unc.edu/.

Other team members include Leonard McMillan, PhD, two graduate students Jeremy Wang and Catherine Welsh from the UNC-Chapel Hill Department of Computer Science; Timothy Bell, Ryan Buus and graduate student John Didion all from the UNC-Chapel Hill Department of Genetics, UNC Lineberger and the Carolina Center for Genome Sciences; Hyuna Yang, PhD, from The Jackson Laboratory; Francois Bonhomme, PhD, and Pierre Boursot, PhD, from the Universite Montpellier (France); Alex Yu, PhD, from the National Taiwan University; Michael Nachman, PhD , from the University of Arizona; Jaroslav Pialek, PhD, from the Academy of Sciences of the Czech Republic, and Priscilla Tucker, PhD, from the University of Michigan.

The research was supported by the National Institute of General Medical Sciences (part of the National Institutes of Health), and several additional National Institutes of Health grants, a Czech Science Foundation grant and a University of North Carolina Bioinformatics and Computational Biology training grant.

Ellen de Graffenreid | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: Genetics Genom Genome Sciences Mouse Phylogeny Science TV genetic diversity health services

More articles from Life Sciences:

nachricht How do muscles know what time it is?
21.08.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A materials scientist’s dream come true

21.08.2018 | Materials Sciences

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>