Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metabolic pathway makes breast tumors more aggressive

15.12.2015

Researchers from the University of Würzburg have revealed a metabolic pathway that seems to make breast tumors more aggressive. The study will also identify possible targets for new cancers drugs. It will appear shortly in the renowned journal Cancer Cell.

The project involved scientists from Berlin, Cambridge, and San Francisco. For their study, this research team examined a protein known as MYC. MYC is a powerful oncogene. Under certain conditions it causes cells to multiply in an uncontrolled manner. This is the case in some highly aggressive breast tumors, for example. The more that cancer cells form MYC, the more malignant they become and the harder they are to treat.


Section through the mammary gland of a mouse. The regions in which the stems cells are located are stained red. In this image, deliberate genetically engineered changes result in the formation of large quantities of MYC, controlling the categorization of stem cells as breast tissue. (Image: Biocenter at the University of Würzburg)


Stem cells of the breast are normally in standby mode. When they receive the signal from MYC that they should form new tissue, they begin to divide. The cells consume a huge amount of energy for their division. They obtain this from special cellular power plants, the mitochondria (stained orange in the figure). In the end, the high demand for energy indirectly causes the cells to lose their stem cell properties, so they can only form breast tissue. (Image: Biocenter at the University of Würzburg)

At the same time, however, MYC assumes a key role in the body. It is involved in regulating adult stem cells. At some point in their lives cells normally decide on a fixed career path, becoming skin cells, liver cells or nerve cells, for example. They cannot abandon this path; for instance, a skin cell will never turn into a liver cell.

Adult stem cells, on the other hand, are pluripotent – their fate has yet to be decided fully. The adult stem cells of the breast, as an example, have yet to categorize themselves as the various types of tissue of the mammary gland. MYC controls this process. “We have been able to show how exactly MYC does this,” explains Dr. Björn von Eyss from the Biocenter at the Julius Maximilian University of Würzburg.

They found that MYC stimulates stem cell division. To do this it needs a lot of energy. This increased energy consumption activates an enzyme known as AMPK. This enzyme in turn indirectly disables the stem cell program. As a result, the new cells become set on their career: they categorize themselves as breast tissue and lose their stem cell properties.

Dangerous safeguard mechanism

“Stem cell division and categorization are therefore linked,” stresses Björn von Eyss. “We interpret this as a mechanism to safeguard against cancer: The stem cell cannot simply become random tissue types that keep on dividing in an uncontrolled manner.”
Astonishingly, however, this mechanism seems to have precisely the opposite effect in tumor cells of the breast. There, too, MYC activates the AMPK enzyme. But this makes the tumor even more aggressive and harder to treat. The Würzburg researchers are keen to take a closer look in future at why this happens.

A high level of MYC therefore worsens the prognosis for breast cancer patients considerably. “If we prevent the activity of MYC in mice using genetic engineering, on the other hand, the tumors become more benign again,” says von Eyss. However, MYC is unfortunately not a suitable target for drugs, partly due to its diverse range of effects.

So, the researchers have now set their sights instead on the signaling pathway they have identified. “We are looking specifically for agents that reduce the activity of AMPK, for example,” explains von Eyss. “We may be able to use such agents to make tumors grow less aggressively and respond to drugs better.”

Björn von Eyss, Laura A. Jaenicke, Roderik M. Kortlever, Nadine Royla, Katrin E.Wiese, Sebastian Letschert, Leigh-Anne McDuffus, Markus Sauer, Andreas Rosenwald, Gerard I. Evan, Stefan Kempa, and Martin Eilers: A MYC-driven change in mitochondrial dynamics limits YAP/TAZ function in mammary epithelial cells and breast cancer; Cancer Cell; http://dx.doi.org/10.1016/j.ccell.2015.10.013

By Frank Luerweg

Contact

Dr. Björn von Eyss, Biocenter at the University of Würzburg, T +49 (0)931 31-82695, bjoern.voneyss@biozentrum.uni-wuerzburg.de

Weitere Informationen:

http://dx.doi.org/10.1016/j.ccell.2015.10.013

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>