Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researchers Discover Molecule Responsible for Axonal Branching

21.09.2009
The human brain consists of about 100 billion (1011) neurons, which altogether form about 100 trillion (1014) synaptic connections with each other. A crucial mechanism for the generation of this complex wiring pattern is the formation of neuronal branches. The neurobiologists Dr. Hannes Schmidt and Professor Fritz G. Rathjen at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, have now discovered a molecule that regulates this vital process. At the same time they have succeeded in elucidating the signaling cascade induced by this molecule (PNAS, Early Edition, 2009, doi:10.1073)*.

Through the ramification of its fiber-like axon, a single neuron can send branches and thus transmit information into several target areas at the same time. In principle, neurobiologists distinguish between two kinds of axonal branching: branching of the growth cone at the tip of an axon and the sprouting of collaterals (interstitial branching) from the axon shaft.

Both forms of axonal branching can be observed in sensory neurons, which transmit the sensation of touch, pain and temperature, among others. When the axons of these neurons reach the spinal cord, their growth cones first split (bifurcate) and consequently the axons divide into two branches growing in opposite directions. Later new branches sprout from the shaft of these daughter axons which penetrate the gray matter of the spinal cord.

Through investigations on sensory neurons, Dr. Hannes Schmidt and his colleagues were able to identify a protein which triggers the splitting of the growth cone of the sensory axons: the peptide CNP (the abbreviation stands for C-type natriuretic peptide). In transgenic mice the scientists were able to show that CNP is formed in the spinal cord precisely when sensory neurons grow into it. In the absence of CNP bifurcation can no longer occur which results in reduced neuronal connectivity in the spinal cord.

The new findings supplement earlier discoveries of the research group of Professor Rathjen according to which a cGMP-signaling cascade is responsible for the bifurcation of sensory axons. When CNP binds to its receptor Npr2 (natriuretic peptide receptor 2) on the surface of the axons, this signaling cascade is set in motion, which in turn induces the formation of the secondary messenger molecule cGMP. This messenger molecule then activates the protein kinase cGKI (cGMP-dependent protein kinase I), which can switch on and off a whole series of target proteins. The cytoskeleton of the neurons is thus altered in such a way that their growth cone splits into two daughter axons.

Next, the researchers want to identify these target proteins. Further analyses should clarify whether the cGMP signaling cascade likewise regulates the branching of other axon systems and whether this impacts the sensation of pain.

*C-type natriuretic peptide (CNP) is a bifurcation factor for sensory neurons
Author affiliation: Hannes Schmidta, Agne Stonkutea, René Jüttnera, Doris Koeslingb, Andreas Friebeb,c, Fritz G. Rathjena
a Department of Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Robert Rössle Str. 10, D-13092 Berlin
b Institute for Pharmacology and Toxicology, Ruhr University Bochum, D-44780 Bochum
c Present address: Institute for Physiology I, University of Würzburg, Röntgenring 9, D-97070 Würzburg

Correspondence to F.G. Rathjen: rathjen@mdc-berlin.de

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de/
http://www.mdc-berlin.de/en/research/research_teams/developmental_neurobiology/Projects/index.html

More articles from Life Sciences:

nachricht Study clarifies kinship of important plant group
05.08.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Human cell-based test systems for toxicity studies: Ready-to-use Toxicity Assay (hiPSC)
05.08.2020 | Fraunhofer-Institut für Biomedizinische Technik IBMT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Manifestation of quantum distance in flat band materials

05.08.2020 | Physics and Astronomy

Discovery shows promise for treating Huntington's Disease

05.08.2020 | Health and Medicine

Rock debris protects glaciers from climate change more than previously known

05.08.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>