Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marriage of microscopy techniques reveals 3-D structure of critical protein complex

03.08.2017

Researchers at the Stowers Institute for Medical Research have solved the three-dimensional structure of a complex that is essential for the correct sorting of chromosomes into eggs and sperm during reproductive cell division or meiosis.

When this structure, called the synaptonemal complex, doesn't assemble properly in the cell, it can lead to chromosomal abnormalities, miscarriages, and birth defects.


The Drosophila synaptonemal complex forms between homologous chromosomes as two distinct layers that mirror each other.

Illustration by Ryan Kramer

Since the synaptonemal complex was first discovered in 1956, researchers have been trying to identify its many moving parts and how they fit together. Their efforts have been limited by the laws of physics: the structure is too small to be visualized by even the most high-power microscopes.

Now, Stowers researchers, including Cori Cahoon, Zulin Yu, Ph.D., and Yongfu Wang, Ph.D., have married two advanced microscopy techniques - one that enlarges samples to several times their original size and another that uses computers to capture what the human eye cannot see - to render the likeness of this enigmatic structure. Their findings, reported in the July 31, 2017 online early edition of the Proceedings of the National Academy of Sciences, were not at all what they expected.

"The structure was so much more complicated and beautiful than we ever imagined," says R. Scott Hawley, Ph.D., an investigator at the Stowers Institute and senior author of the study. "We thought it just looked like a railroad track, but we discovered that it is actually more like two railroad tracks, one stacked on top of the other. That changes the way we think about this structure and what it does."

In meiosis, the cell copies all its chromosomes, pairs them up, and then divides them into eggs or sperm. This carefully choreographed process is helped along by the synaptonemal complex, an assembly of proteins that forms between the paired homologous chromosomes and keeps them properly aligned and in position. Errors during meiosis are a leading cause of miscarriages in humans.

For decades, researchers working in yeast, flies, worms, and even some mammals have tried to get a close look at the evolutionarily conserved synaptonemal complex structure. Then last year, Yu and Wang, researchers in the Stowers Microscopy and Histology facilities, respectively, learned of a new technique called expansion microscopy that allows structures to be visualized with nanoscale precision. They contacted Cahoon, a predoctoral researcher in Hawley's lab who was studying the synaptonemal complex, and suggested they give it a try.

"She was willing to take a chance and do the experiments, even though they were risky. It paid off big time," says Hawley. "What they accomplished was a technical tour de force."

First, the team gathered samples of the synaptonemal complex from dissected fruit fly ovaries. They embedded these samples in a special type of gel, added liquid, and watched the samples expand fourfold. Then, the researchers studied the super-sized samples using the super-resolution technique called structured illumination microscopy.

What they found was startling: the structure was divided into two identical layers, which had been indistinguishable at lower resolution. Basically, the synaptonemal complex connects two homologous chromosomes, each with two sister chromatids stacked on one another. The researchers showed that this complex uses a two-tiered approach to connect the two upper chromatids and the two lower chromatids separately. They created a computer model of the structure showing coils of DNA connected by two sets of railroad tracks, which are made up of the four known proteins that are part of the synaptonemal complex. Although in this study the researchers looked at only four proteins, many more unknown proteins likely reside in the structure as well, so there are still more details to fill in.

"This was a really incredible insight, a technical leap using this new methodology of expansion microscopy and merging it with structured illumination to create a way to look at a structure that hasn't been resolved before," says Hawley. "There is a lot more we can learn. The deeper we dive into structure, the more complexity we see, the more amazing the structure becomes. Structure provides so much insight into function."

###

Other contributors from the Stowers Institute include Fengli Guo, Ph.D., Jay R. Unruh, Ph.D., and Brian D. Slaughter, Ph.D.

The work was funded by the Stowers Institute for Medical Research and R. Scott Hawley is an American Cancer Society Professor.

Lay Summary of Findings

Errors in meiosis, the process of cell division that gives rise to eggs and sperm, are the leading cause of miscarriage in humans. In a study published in the July 31, 2017 online early edition of the Proceedings of the National Academy of Sciences, Stowers Institute scientists solve the three-dimensional structure of a protein complex that is essential to meiosis. By merging two advanced microscopy techniques, the researchers discovered that this structure, known as the synaptonemal complex, looks like two sets of railroad tracks stacked on top of each other. According to Investigator R. Scott Hawley, Ph.D., the study represents a technical leap and provides a new window on the way this critical complex works to keep meiosis moving smoothly.

About the Stowers Institute for Medical Research

The Stowers Institute for Medical Research is a non-profit, basic biomedical research organization dedicated to improving human health by studying the fundamental processes of life. Jim Stowers, founder of American Century Investments, and his wife, Virginia, opened the Institute in 2000. Currently, the Institute is home to about 500 researchers and support personnel, over 20 independent research programs, and more than a dozen technology development and core facilities. Learn more about the Institute at http://www.stowers.org and about its graduate program at http://www.stowers.org/gradschool.

Media Contact

Kim Bland
ksb@stowers.org
816-926-4015

 @ScienceStowers

http://www.stowers.org/ 

Kim Bland | EurekAlert!

More articles from Life Sciences:

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

nachricht Colorectal cancer risk factors decrypted
16.07.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>