Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making ammonia 'greener'

14.01.2019

Chemical engineers in Ohio create ammonia from nitrogen, water; could lead to smaller ammonia processing plants powered by alternative energy

Ammonia, a compound first synthesized about a century ago, has dozens of modern uses and has become essential in making the fertilizer that now sustains most of our global food production.


This is a graphic illustration showing protonated water reacting with nitrogen molecules to form ammonia at a plasma-liquid interface.

Credit: Case Western Reserve University

But while we've been producing ammonia at a large scale since the 1930s, it has been accomplished mainly in hulking chemical plants requiring vast amounts of hydrogen gas from fossil fuels--making ammonia among the most energy-intensive among all large-volume chemicals.

A pair of researchers at Case Western Reserve University--one an expert in electro-chemical synthesis, the other in applications of plasmas--are working on fixing that.

Researchers Julie Renner and Mohan Sankaran have come up with a new way to create ammonia from nitrogen and water at low temperature and low pressure. They've done it successfully so far in a laboratory without using hydrogen or the solid metal catalyst necessary in traditional processes.

"Our approach--an electrolytic process with a plasma--is completely new," said Mohan Sankaran, the Goodrich Professor of Engineering Innovation at the Case School of Engineering.

Plasmas, often referred to as the fourth state of matter (apart from solid, liquid or gas), are ionized clouds of gas, consisting of positive ions and free electrons, which give it the unique ability to activate chemical bonds, including the rather challenging nitrogen molecule, at room temperature.

Renner, a Climo Assistant Professor in the Chemical and Biomolecular Engineering Department, added that because this new process doesn't need high pressure or high temperature or hydrogen, it makes it scalable--"the ideal kind of technology for a much smaller plant, one with high potential to be powered by renewable energy."

The results of their two-year collaboration were published this month in the journal Science Advances.

History lesson: The Haber-Bosch process

Virtually all commercial ammonia is made from nitrogen and hydrogen, using an iron catalyst at high temperature and pressure.

German physical chemist Fritz Haber received the Nobel Prize for Chemistry in 1918 for developing this process, which made manufacturing ammonia economically feasible.

But the process became more economically profitable when industrial chemist Carl Bosch (who also won a Nobel Prize in 1931) brought the method into a large-scale system. The process was further propelled by a second innovation: the development of steam methane reforming that made hydrogen more accessible and less expensive.

So, what became known as the Haber-Bosch process became the go-to global method for fixing nitrogen and hydrogen to make ammonia.

But Haber-Bosch was never the only approach to nitrogen fixation, it was just the turn-of-the-century winner.

A new, old method rises

Renner and Sankaran have resurrected an element from a little-known Norwegian method that predated Haber-Bosch (the Birkeland-Eyde process) which reacted nitrogen and oxygen to produce nitrates, another chemical that can be used in agriculture. That process lost out to Haber-Bosch mostly because it required even more energy in the form of electricity, a limited resource in the early 20th century.

"Our approach is similar to electrolytic synthesis of ammonia, which has gained interest as an alternative to Haber-Bosch because it can be integrated with renewable energy," Sankaran said. "However, like the Birkeland-Eyde process, we use a plasma, which is energy intensive. Electricity is still a barrier, but less so now, and with the increase in renewables, it may not be a barrier at all in the future.

"And perhaps most significantly, our process does not produce hydrogen gas," he said. "This has been the major bottleneck of other electrolytic approaches to forming ammonia from water (and nitrogen), the undesirable formation of hydrogen."

The Renner-Sankaran process also does not use a solid metal catalyst that could be one of the reasons ammonia is obtained instead of hydrogen.

"In our system, the ammonia is formed at the interface of a gas plasma and liquid water surface and forms freely in solution," Sankaran said.

So far, the "table-top batches" of ammonia produced by the duo have been very small and the energy efficiency is still less than Haber-Bosch. But with continued optimization, their discovery and development of a new process could someday lead to smaller, more localized ammonia plants which use green energy.

Media Contact

Michael Scott
mxs1386@case.edu
216-368-1004

 @cwru

http://www.case.edu 

Michael Scott | EurekAlert!
Further information:
https://thedaily.case.edu/making-ammonia-greener/

More articles from Life Sciences:

nachricht Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | ETH Zurich

nachricht New molecular blueprint advances our understanding of photosynthesis
15.02.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>