Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lung cancer suppresses miR-200 to invade and spread

16.09.2009
Findings present possible avenue for preventing metastasis

Primary lung cancer shifts to metastatic disease by suppressing a family of small molecules that normally locks the tumor in a noninvasive state, researchers at The University of Texas M. D. Anderson Cancer Center report in the Sept. 15 edition of Genes and Development.

"Existing treatments have little success against cancer that has spread to other organs, so finding a way to prevent metastasis could have a huge impact on survival," said senior author Jonathan Kurie, M.D., professor in M. D. Anderson's Department of Thoracic/Head and Neck Medical Oncology.

"To do that, we need to understand the cues that initiate metastasis. In this paper we show that microRNA-200 is one of those central cues," Kurie said. MicroRNAs are single-stranded bits of RNA that regulate messenger RNA expressed by genes to order the creation of a specific protein.

All primary tumors in a strain of mice prone to metastatic lung cancer became invasive and spread when miR-200 was suppressed. Protecting miR-200 from blockade completely prevented metastasis in another group of the mice, the researchers found.

Tumors shift between noninvasive and invasive state

The team found that miR-200 needs to be shut down for the primary tumor to change from stationary epithelial cells to mobile mesenchymal cells. This epithelial-to-mesenchymal transition (EMT) is recognized as a crucial step in metastasis, which causes 90 percent of all cancer deaths.

An estimated 80 percent of all solid tumors originate in the epithelial cells, which line an organ or its cavities and are generally immobile. Mesenchymal cells are mobile and can differentiate into many different cell types.

When the team profiled a panel of 40 human lung cancer cell lines that had been characterized on the basis of EMT features (epithelial versus mesenchmyal) and site of origin (primary lung tumor versus metastasis), miR-200 expression was highest in those cells with epithelial features and was the best of more than 700 microRNAs tested as an indicator of metastatic or primary origin.

"Highly metastatic lung cancer cells had completely shutdown miR-200 expression, that's what triggered EMT in those cells," Kurie said. "When we went back and forced overexpression of miR-200, the cells remained locked in the epithelial state and could no longer metastasize."

The team also found that the cancer cells could shift from epithelial to mesenchymal and back depending on the cell's context. The same cells that remain epithelial in Matrigel become "blatantly mesenchymal" when moved to the mouse model and assume an intermediate state when growing in plastic dishes.

Matrigel is a gelatinous mixture that is designed to simulate the complex environment that cells occupy called the extracellular matrix.

"If you take the tumors out of the mice and back to the matrigel, they revert to epithelial cells," Kurie said. "These cells are highly plastic and responsive to the extracellular environment.

"The idea that these highly plastic cells are the source of metastasis indicates that metastatic capacity is a regulatable tumor cell function. That's new," Kurie said. "Identifying the signals that govern plasticity could lead to a novel way of targeting and preventing metastasis."

Kurie and colleagues continue to work on identifying upstream regulators of miR-200 that might provide targets for therapy.

The researchers started with a strain of mice that develops metastatic lung cancer based on mutations in the Kras oncogene and the tumor-suppressing p53 gene. Cell lines isolated from these mice were introduced in wild type mice and the resultant tumors characterized for metastatic potential.

All tumor cell lines were profiled for gene expression. "The thing that popped out strongly was an EMT signal present in the metastatic cells but not in the non-metastatic cells," Kurie said.

The team then profiled the tumors for microRNA expression. Out of thousands of miRNAs, only the miR-200 family of five miRNAs, along with three others, emerged as differentially expressed. The other three are being studied.

Co-authors with Kurie were first author Don Gibbons, M.D., Ph.D., Wei Lin, M.D., Zain Rizvi, and Nishan Thilaganathan, all of the Department of Thoracic/Head and Neck Medical Oncology; Chad Creighton, Ph.D., and Yiqun Zhang of the Dan L. Duncan Cancer Center at Baylor College of Medicine; Philip Gregory, Ph.D., and Gregory Goodall, Ph.D., of the Centre for Cancer Biology, Hanson Institute in Adelaide, Australia; and Alexander Pertsemlidis, Ph.D., and Liqin Du, Ph.D., of the Eugene McDermott Center for Human Growth and Development at The University of Texas Southwestern Medical Center in Dallas.

The research was funded by grants from the National Cancer Institute, including the Lung Cancer Specialized Program of Research Excellence; the David M. Sather Memorial Fund, the Armour Family Lung Cancer Research Fund and the Dan L. Duncan Cancer Center at Baylor College of Medicine. Gibbons also was supported by a Young Investigator Award from The ASCO Cancer Foundation and an International Association for the Study of Lung Cancer (IASLC) Fellow Grant.

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For four of the past six years, including 2008, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>