Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-cal diet's effects seen in fly brain, mouthpart

17.07.2012
Transmission of nerve signals is enhanced in the insects that eat less

A novel technique for measuring tiny, rapid-fire secretions in the brains and mouthparts of fruit flies (drosophila) is providing insights into the beneficial effects of eating less — information that ultimately could help people suffering from neuromuscular disorders.

Using the method, researchers uncovered never-before-seen brain chemistry that helps explain why fruit flies genetically manipulated to mimic conditions such as Parkinson's disease and myasthenia gravis are more vigorous and live longer when fed a restricted diet.

Published in June by Aging Cell, the research was conducted by a team from the School of Medicine and the Barshop Institute for Longevity and Aging Studies at The University of Texas Health Science Center San Antonio.

Why eating less may be therapeutic

Senior author Benjamin Eaton, Ph.D., assistant professor of physiology, says the results demonstrate how limiting calories may be therapeutic for people with various syndromes.

Lead author Joel Rawson, Ph.D., and the Eaton team developed a novel system to analyze the impact of diet on life span and motor behavior as well as on neurotransmission, which is believed to underlie most neurological disorders in humans.

Flies on the low-calorie diet showed a 100 percent increase in the release of brain chemicals, which are called neurotransmitters, from their neurons. These chemicals carry signals from one nerve cell to another across gaps called synapses. The brain has millions of synapses that are believed to be the critical structures required for normal brain function. Diseases such as Parkinson's harm them irreparably.

Firing up the muscle activity

Furthermore the chemicals were secreted at critical locations. "Diet restriction increased the neurotransmitters released at synapses called neuromuscular junctions," Dr. Eaton said. "These synapses, which form on muscle, transmit nerve impulses from the brain to muscles, resulting in movement. If neuromuscular junctions degenerate, resulting in the release of less neurotransmitter, then muscle activity diminishes. This is observed in diseases such as myasthenia gravis and amyotrophic lateral sclerosis (ALS)."

The observation that diet could directly affect the amount of neurotransmitter secreted by the neuron was a novel observation that had not been seen previously.

"People have seen that diet has effects on the nervous system, but the nuts and bolts of what it is doing to neurons have not been established," Dr. Eaton said. ""We believe we have shown a novel and important effect."

Probing the fly proboscis

The team genetically engineered a single pair of motor neurons to develop neurodegenerative disease, resulting in a decrease of the flies' ability to extend the proboscis, which they use to gather food. The team then dissected the head to locate the appropriate muscles on the proboscis and quantified the neurotransmitter activity occurring there, which continues to take place even after death.

"We went into the very muscles that that these motor neurons controlled and analyzed neurotransmission using electrodes," Dr. Eaton said. "We showed diet can rescue proboscis extension by increasing the amount of neurotransmitter released. This suggests that diet could be an important therapy for improving muscle function during motor diseases such as ALS."

Next up is to define the proteins in neurons that are being altered by diet restriction, he said.

An Ellison Medical Foundation New Scholar Award (AG-NS-0415-07) to Dr. Eaton supported this work. Dr. Rawson is supported by grant T32-AG021890 from the National Institute on Aging, National Institutes of Health.

On the Web and Twitter

For current news from the UT Health Science Center San Antonio, please visit our news release website or follow us on Twitter @uthscsa.

About the UT Health Science Center San Antonio

The University of Texas Health Science Center at San Antonio, one of the country's leading health sciences universities, ranks in the top 3 percent of all institutions worldwide receiving federal funding. Research and other sponsored program activity totaled $231 million in fiscal year 2011. The university's schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have produced approximately 28,000 graduates. The $736 million operating budget supports eight campuses in San Antonio, Laredo, Harlingen and Edinburg. For more information on the many ways "We make lives better®," visit www.uthscsa.edu.

Will Sansom | EurekAlert!
Further information:
http://www.uthscsa.edu

More articles from Life Sciences:

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

nachricht Removing toxic mercury from contaminated water
21.11.2018 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>