Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The love song of a fly

03.03.2011
Neurobiologists at Vienna’s Research Institute of Molecular Pathology use the mating ritual of the fruit fly to study how the nervous system initiates, controls and utilizes behavior. Using newly developed thermogenetic methods, the researchers are able to initiate the courtship song of the male fly by “remote control”, and study the involved neural networks. The scientific journal NEURON recently published their findings.

Male fruit flies of the Drosophila melanogaster species perform a complex courtship ritual to attract the attention of female flies and make them amenable to mating. As part of the ritual, the male fly performs a “song” by extending a wing and vibrating it. The pulsating acoustic signal produced by this exercise sounds rather like static crackling or humming to the human ear. However, the female fly finds the sound irresistible. Singing is an important part of the fly's courtship; how well the male performs its song is crucial for the success of its mating.

Under natural circumstances, the sight and smell of a female fly induce courtship in the male. At the Institute of Molecular Pathology in Vienna, scientists have developed a kind of molecular “remote control” to initiate the ritual. Anne von Philipsborn, a biologist and Postdoc in the lab of IMP Director Barry Dickson, works with genetically modified fruit flies. By raising the ambient temperature, she can get an isolated male fly - in the absence of a female, and presumably not thinking at all about sex - to become aroused and initiate courtship.

This condition is achieved by the use of a method known as thermal activation. Defined sets of nerve cells (neurons) are fitted with temperature-sensitive ion channels. These channels open up when the temperature approaches 30 degrees and become permeable for certain small molecules. The flow of ions, in turn, activates the nerve cell and triggers an impulse.

By switching on and off targeted nerve cells, the neurobiologists in Vienna were able to identify two centers in the fly’s nervous system that control singing. The command to sing comes from a center located in the brain. This network of cells receives input from various sources; the most important of these are sensory organs and other regions of the brain. What the fly sees, hears and smells is channeled to this circuit and, together with pre-existing information obtained from prior experience, a decision is made to court or not to court the female.

The second neural circuit is located in the chest and is connected to the muscles that move the wings. This network is a so-called pattern generator. It coordinates the movement of the muscles and produces their rhythmic pattern.

For the scientists at the IMP, the courtship song of the fruit fly serves as a model to investigate the neural mechanisms of decision-making, action selection, and motor pattern generation. In short, they want to find out how meaningful behavior is orchestrated.

Having found the key neurons that make the fly sing, the team of neurobiologists will continue to look deeper into the mechanisms that control behavior. Barry Dickson explains their future plans: “We now need to figure out exactly how this circuit works under normal conditions, when the male is naturally aroused by a virgin female. And we are also now starting to use the same method to look for neurons that trigger other components of mating behavior, such as copulation itself."

Original publication: „Neuronal control of Drosophila courtship song“ (Anne C. von Philipsborn et al.). NEURON, February 10, 2011 (Vol. 69, pp. 509–522).

Contact:
Dr. Heidemarie Hurtl
IMP-IMBA Communications
(+ 43 1) 79730 3625
hurtl@imp.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imp.ac.at
http://www.imp.ac.at/contact/communications-department/press-releases/

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>