Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Look into the future with genetic programming

07.04.2014

With predictive modeling techniques, it is possible to predict anything from clients’ shopping habits and illnesses to a golfer’s handicap. The only prerequisite is to have enough examples. In a doctoral thesis from the University of Borås in Sweden, Rikard König has adapted the technique of genetic programming so it can be used for such purposes.

The doctoral thesis, Enhancing Genetic Programming for Predictive Modeling, is about machine learning, more specifically predictive modeling, a field of computer science. Machine learning entails getting a computer to learn something, to become intelligent. Predictive modeling is a broad area of machine learning where a computer learns things on the basis of positive and negative examples, finds connections and explains why things turn out in a certain way.

Within predictive modeling, there is an array of techniques that are used to produce models that can predict practically anything, for instance, how people might be expected to respond to advertisements. Since these are general techniques, it is possible to predict just about anything as long as there are enough previous examples, i.e. sufficient information. The goal of predictive modeling is to find an accurate model and preferably one that explains something that was not previously known.

Genetic programming (GP) is a general optimization technique that is based on Darwin’s theories on evolution and natural selection. It is a technique that was not really designed for predictive modelling.

”In my thesis, I present several improvements that increase the accuracy and comprehensibility of models created with GP. There are many researchers who work with GP but my solutions are unique,” says Rikard König, PhD student at the School of Business and IT at the University of Borås.

In order to produce a model with the help of GP, you start off with, say, a thousand randomly chosen models and let them compete with each other. You work out how many errors the models make on known examples and then base a natural selection on the results. The most accurate models have a greater chance of surviving and having “children” – you pair off two models. These “children” are then a combination of their parents and form a new generation which is hopefully stronger. A small number of models can also be subjected to mutation, just like in nature.

”The new generation is assessed in the same way, using the known examples. They compete, pair off and give rise to an even stronger new generation. The process is repeated until a sufficiently accurate model has been found. The fascinating thing is that evolution is such a powerful way of searching through all possible solutions,” says Rikard König.

GP has several properties that make it suitable for predictive modeling. One example is that the search is independent of the representation of the model. This means that the exact representation and way of measuring errors can be adapted to individual problems. This is not normally the case with traditional predictive techniques. At the same time, the technique is problematic when a highly complex model is needed since the search goes through all possible solutions and the number of solutions increases exponentially with the complexity of the models.

”One of my improvements is a hybrid technique for creating an accurate and comprehensible model when the search space is extremely large, i.e. when a model with high complexity is required. The solution is to send relatively strong models created by a traditional predictive technique into a generation to guide the search in a promising direction.”

As part of his research, Rikard König has also produced an application that realizes his research results. The programme can be downloaded from www.grex.se

Rikard König is working on several research projects where these solutions may be put to use. For instance, one project is in collaboration with Scania where data from tens of thousands of lorries have been saved and will be analysed in order to explain what effect the driver has on fuel consumption. Another example, which also shows how generic the technique is, is a new project where golf swings from 500 golfers will be analysed. Here, the aim is to find general explanations for what distinguishes good swings from bad swings. Another aim is to be able to automatically recommend exercises for individual golfers on the basis of each person’s particular needs.

Thesis title: Enhancing Genetic Programming for Predictive Modeling

Contact: Rikard König, rikard.konig@hb.se, +46-33 435 5945, +46- 73922 96 56

Pressofficer Anna Kjellsson, anna.kjellsson@hb.se, +46-734 61 20 01

Anna Kjellsson | idw - Informationsdienst Wissenschaft

Further reports about: Genetic accurate errors improvements pair produce programming technique

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>