Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Locusts provide insight into brain response to stimuli, senses

28.04.2015

By training a type of grasshopper to recognize odors, a team of biomedical engineers at Washington University in St. Louis is learning more about the brain and how it processes information from its senses.

Baranidharan Raman, PhD, assistant professor of biomedical engineering in the School of Engineering & Applied Science, found that locusts trained to recognize certain odors reacted differently when the odors were presented overlapping with another. While the results of this research, published in the April 27 issue of Nature Communications, focus on the sense of smell, Raman and his team plan to use the results to determine if the brain processes signals similarly for other senses.


Baranidharan Raman, Ph.D., and his team trained locusts to recognize odors to learn more about how the brain processes stimuli.

Credit: Baranidharan Raman, Ph.D.

A locust has sensory neurons in its antennae that convert chemical cues, such as puffs of an odor, into electrical signals and transmit them to circuits of neurons in the brain. Raman and his team examined the change in how the neurons in the locust's brain responded to an odor depending on activity before the exposure to the odor. They were interested in understanding how the response to an odor changed depending on the stimulus that preceded it.

The team discovered a feature in the way the brain processes signals: When two puffs of a similar odor were given one after the other, the spiking neural activity generated by the first encountered odor interfered with processing the second odor.

As a result, even though a conserved set of neurons responded to the newer odor, the spiking activity patterns that would normally be brought on were disturbed. However, when two different odor puffs were given in overlapping succession, there was less interference to the brain's response evoked by the second odor.

For this study, Raman and his team used Pavolovian conditioning to train hungry locusts to respond to a puff of an odor by rewarding them with a piece of grass. After being trained, the locusts moved their palps, small sensory appendages near their mouth parts, in response to an odor puff they had been trained to recognize.

William Padovano, a senior majoring in biomedical engineering and a researcher in Raman's lab, painted the tips of the locust palps with a green paint to make them more visible and distinct compared to the surrounding parts. After videotaping the locusts' response to the odor puff, Padovano was able to filter out the motion of the painted palps and track the locusts' behavior very precisely. He saw that when an odor puff was given, the locust moved its palps in anticipation of its reward.

"We found that the locusts recognize the odor and move their palps within roughly 500 milliseconds," Raman says. "Once trained, the locusts did not forget the learned association easily. Even when we presented the trained odorant multiple times without any reward and in different ways, alone or in sequence, there was always a response."

The team sought to compare the changes in the neural and behavioral response when the locusts were given an odor they had been trained to recognize but manipulated to follow another odor they had not been trained to recognize.

"The locusts robustly recognized and responded to the trained odor whether it was presented alone or after another odor, but their response time and behavior were less predictable when the trained odor followed a similar odor that evoked highly overlapping neural activity," Raman says.

But when two different odors were presented, the locusts' response was very predictable.

"When the two different odors were in a sequence, the locusts responded quickly and predictably to the trained odor, because it was novel," Raman says. "The more novel the stimulus, the more preserved the pattern of the spiking activity becomes and more predictable the behavioral responses were."

Raman says the change in the neural response patterns they observed with stimulus history presents a general phenomenon about neural networks in the brain.

"This has helped us to finalize that even though the pattern of spiking activity over time has changed, the odor identity has not changed," Raman says. "The odor identity is completely encoded by which combinations of neurons are activated. The temporal dimension is used to emphasize or de-emphasize odorants based on their novelty."

Raman and his team plan to continue investigating neural responses.

"Given that we know we have a paradigm where we can very finely track the behavior, we can make very fine calculations with neural activity to understand how each aspect of neural response is related to behavior," he says.

###

Saha D, Li C, Peterson S, Padovano W, Katta N, Raman B. Behavioural correlates of combinatorial versus temporal features of odour codes. Nature Communications, April 27, 2015. DOI: 10.1038/ncomms7953.

Funding for this research was provided by the McDonnell Center for Systems Neuroscience, the Office of Naval Research, and the Department of Biomedical Engineering in the School of Engineering & Applied Science at Washington University in St. Louis.

The School of Engineering & Applied Science at Washington University in St. Louis focuses intellectual efforts through a new convergence paradigm and builds on strengths, particularly as applied to medicine and health, energy and environment, entrepreneurship and security. With 91 tenured/tenure-track and 40 additional full-time faculty, 1,300 undergraduate students, more than 900 graduate students and more than 23,000 alumni, we are working to leverage our partnerships with academic and industry partners -- across disciplines and across the world -- to contribute to solving the greatest global challenges of the 21st century.

Media Contact

Julie Flory
julie.flory@wustl.edu
314-935-5408

 @WUSTLnews

http://www.wustl.edu 

Julie Flory | EurekAlert!

More articles from Life Sciences:

nachricht Lateral gene transfer enables chemical protection of beetles against antagonistic fungi
18.07.2018 | Johannes Gutenberg-Universität Mainz

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>