Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light Vortex

26.10.2011
Circularly polarized luminescence from a stirred and gelled solution of dye

Simple stirring can influence light, according to a report presented in the journal Angewandte Chemie by Kunihiko Okano and co-workers. Dye molecules locked in a gel send out “helical” (circularly polarized) light instead of “normal” light if the solution is stirred as it gels.

If you hold one end of a rope and swing it up and down with your arm while the other end is tied to a fence, the rope forms a wave. The amplitude oscillates vertically. If you swing the rope left and right instead, the it oscillates horizontally.

If the rope runs through a narrow gap between two trees, only the vertical wave can pass through to the end of the rope. Light can also be viewed as a wave. The oscillation of ordinary light from a light bulb has no preferred direction. It varies in all directions perpendicular to the direction of propagation of the light. As the two trees do with the rope, special glasses, known as polarizing filters, allow only those light waves which oscillate in a specific plane to pass through.

The light that passes through is known as linearly polarized light. Another variation is also possible: circularly polarized light. In this case, the light wave oscillates in a helical pattern because the amplitude describes a circle around the axis of propagation. The amplitude can rotate around to the left or the right.

The shape and orientation of molecules can influence the polarization plane of light when it passes through a given substance. It is thus not surprising that some molecules that emit light (luminesce) can give off polarized light. This luminescence can be circularly polarized if the emitting molecules (luminophores) are arranged helically.

The Japanese researchers from the Tokyo University of Science and the Nara Institute of Science and Technology have now found a new twist for emitting circularly polarized light: simply stir. Why does this work? Stirring causes spiral vortexes to form in liquids, which can induce the luminophores to adopt a helical arrangement.

The researchers were even able to preserve the forcibly twisted directionality of the luminescence by causing the solution containing the luminophore molecules, a green rhodamine dye, to gel while being stirred. A gel is formed like the gelatine glaze on a cake. Below a certain temperature the molecules of a gelling agent form a loose network with cavities that contain the other components of the liquid. If the dye solution with a suitable gelling agent is cooled under stirring, the stir-induced spiral arrangement of the luminophores is maintained in the gel. Depending on the direction of stirring, the gel emits left- or right-polarized luminescence. Without stirring, the light emitted is not polarized.

Author: Kunihiko Okano, Tokyo University of Science (Japan), mailto:kokano@rs.noda.tus.ac.jp
Title: Circularly Polarized Luminescence of Rhodamine B in a Supramolecular Chiral Medium Formed by a Vortex Flow

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201104708

Kunihiko Okano | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>