Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New light on medicinal benefits of plants

15.12.2011
Scientists are about to make publicly available all the data they have so far on the genetic blueprint of medicinal plants and what beneficial properties are encoded by the genes identified.

The resources, to be released on Thursday, follow a $6 million initiative to study how plant genes contribute to producing various chemical compounds, some of which are medicinally important.

"Our major goal has been to capture the genetic blueprints of medicinal plants for the advancement of drug discovery and development," said Joe Chappell, professor of plant biochemistry in the University of Kentucky College of Agriculture and coordinator for the Medicinal Plant Consortium (MPC).

Project partner Dr Sarah O'Connor at the John Innes Centre will now work with her research group towards the first full genetic sequence of a medicinal plant and will also experiment with combining beneficial properties from different plants to create the first new-to-nature compounds derived from plants. A priority focus will be compounds with anticancer activity.

"Fewer and fewer new drugs have been successfully making it to the marketplace over the last 10 years, in large part because of a reliance on chemical synthesis for making new chemicals," said Chappell.

"Somehow in our fast-track lives, we forgot to take advantage of the lessons provided by Mother Nature. That is all changing now with the recognition that two-thirds of all currently prescribed drugs can be traced back to natural sources and the development of resources such as those in the MPC to facilitate new drug discovery activities."

Some well-known medicines have come from plants. The once ubiquitous foxglove gives us the cardiac muscle stimulant digoxin. The periwinkle plant offers a source for the widely used chemotherapy drugs vincristine and vinblastine. These and many other medicinal plants, often commonly found in household gardens and flower boxes, harbour a wealth of compounds ripe for medicinal applications.

"Just as the sensory properties of plants interact with and trigger your sense of smell, plants' natural compounds can target and cause a reaction within your body. This gives them tremendous pharmaceutical potential," said Chappell.

During this two-year project researchers set out to develop a collection of data that would aid in understanding how plants make chemicals, a process called biosynthesis. This knowledge ultimately could make it possible to engineer plants to produce larger quantities of medicinally useful compounds as well as different versions with other therapeutic potential.

To develop the resources, the researchers studied the genes and chemical profiles of 14 plants known for medicinal properties or compounds with biological activity. These included plants such as foxglove, ginseng, and periwinkle. The findings will help researchers discover how nature's chemical diversity is created and enable them to uncover new drug candidates or increase the efficacy of existing ones.

"The current understanding of molecules and genes involved in the formation of beneficial compounds is very incomplete," said O'Connor, who is also a lecturer in chemical sciences at University of East Anglia.

"However, the ability to conduct genome-wide studies of model plant species has resulted in an explosive increase in our knowledge of and capacity to understand how genes control biological processes and chemical composition".

The MPC project includes participants from the University of Kentucky, Michigan State University, Iowa State University, the University of Mississippi, Purdue University, Texas A&M University, Massachusetts Institute of Technology, and the John Innes Centre in Norwich. The researchers represent a broad spectrum of expertise from plant biology and systematics to analytical chemistry, genetics and molecular biology, and drug development from natural products.

More information about the MPC and the resources provided are available at the following websites: http://medicinalplantgenomics.msu.edu; http://metnetdb.org/mpmr_public/.

Contacts

JIC Press Office
Zoe Dunford, Tel: 01603 255111, email: zoe.dunford@nbi.ac.uk
Andrew Chapple, Tel: 01603 251490, email: andrew.chapple@nbi.ac.uk
University of Kentucky press office
Carl Nathe, (859) 257-3200; carl.nathe@uky.edu
Photo available:
Periwinkle (Catharanthus roseus), a source of potent chemotherapeutic drugs and a common horticultural plant found around the world.
Funding
Funding was provided by the National Institutes of Health (NIH) and the American Recovery and Reinvestment Act (ARRA

About the John Innes Centre:

The John Innes Centre, www.jic.ac.uk, is a world-leading research centre based on the Norwich Research Park www.nrp.org.uk. The JIC's mission is to generate knowledge of plants and microbes through innovative research, to train scientists for the future, and to apply its knowledge to benefit agriculture, human health and well-being, and the environment. JIC delivers world class bioscience outcomes leading to wealth and job creation, and generating high returns for the UK economy. JIC is one of eight institutes that receive strategic funding from the Biotechnology and Biological Sciences Research Council and received a total of £28.4M investment in 2010-11.

Zoe Dunford | EurekAlert!
Further information:
http://www.nbi.ac.uk

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>