Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leishmania parasites with greater infectivity associated with treatment failure

08.10.2013
Relapses after treatment for Leishmania infection may be due to a greater infectivity of the parasite rather than drug resistance, as has been previously thought, according to a study published in mBio®, the online open-access journal of the American Society for Microbiology.

Visceral leishmaniasis, also called kala-azar, is a parasitic disease that strikes 400,000 people every year and kills around 1 in 10 of its victims. The disease has proven difficult to treat, in part because a large percentage of patients who take the drug of choice, miltefosine, relapse after treatment, coming down with the same disease all over again.

Doctors and scientists have long suspected that drug resistance was behind the failure of miltefosine, but that's not so, according to the researchers. The study reveals that parasites in patients who relapse after leishmaniasis treatment have a greater infectivity than parasites from patients who were treated successfully. They are essentially a worse, more dangerous form of the parasite.

"Parasites from relapsed patients show an increased capacity to infect host cells," says co-author Manu Vanaerschot of the Institute of Tropical Medicine in Antwerp,Belgium. The authors write that it remains to be seen whether miltefosine treatment causes the increased infectivity of the parasite, or if parasites with greater infectivity are capable of escaping treatment.

Miltefosine is at the heart of a vast program aimed at ending visceral leishmaniasis on the Indian subcontinent (India, Bangladesh and Nepal), but 6.8% of Indian patients redevelop symptoms of the disease within 6 months after treatment and 20% of Nepalese patients relapse within 12 months after miltefosine treatment. Parasites collected from patients before and after treatment have been fingerprinted and are very close genetic matches, indicating that these patients are not simply re-infected with new parasites once their treatment ends, they are still carrying the same strain that sickened them before treatment. Other work revealed another surprising fact: parasites from relapsed patients were sensitive to miltefosine, so the failure of treatment was not due to drug resistance, a common suspect in cases where infectious disease treatment fails.

With re-infection and drug resistance now crossed off the list of possible reasons for the high relapse rate, the researchers set out to see what factors might really be at work. They examined the morphology of parasites taken from visceral leishmaniasis patients who were treated successfully and patients who relapsed. They found a significant association between the number of parasites in the metacyclic stage of their life cycle and patient treatment outcome. In other words, patients who relapsed were infected with parasites that have a greater infectivity, meaning they were more capable of infecting human cells.

The precise link between infectivity and treatment failure is not known, write the authors, but they propose that parasites with greater infectivity might cause a greater parasite load in the patient, making the case more difficult to treat, or perhaps they are able to evade the drug by hiding in parts of the body it doesn't easily penetrate, like the skin.

Vanaerschot says he and his colleagues saw a similar correlation between infectivity and treatment failure in patients who had been treated with the types of drugs that used to be favored in the region, pentavalent animonials. "At the time we thought that it was a very special case. But now that we've also seen this in parasites treated with other drugs, this indicates that it might be a more common problem than we originally thought."

Co-author Jean-Claude Dujardin, of the Institute of Tropical Medicine and the University of Antwerp, in Belgium, says regardless of the underlying cause-and-effect relationship, the findings are a wake-up call about the possible effects a therapy might have on pathogens it's supposed to kill.

"When we develop a drug to fight against a pathogen, we need to think about possible collateral damage. Of course we have to use these drugs, but we need surveillance to see if more aggressive parasites start to spread," says Dujardin.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>