Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leishmania parasites with greater infectivity associated with treatment failure

08.10.2013
Relapses after treatment for Leishmania infection may be due to a greater infectivity of the parasite rather than drug resistance, as has been previously thought, according to a study published in mBio®, the online open-access journal of the American Society for Microbiology.

Visceral leishmaniasis, also called kala-azar, is a parasitic disease that strikes 400,000 people every year and kills around 1 in 10 of its victims. The disease has proven difficult to treat, in part because a large percentage of patients who take the drug of choice, miltefosine, relapse after treatment, coming down with the same disease all over again.

Doctors and scientists have long suspected that drug resistance was behind the failure of miltefosine, but that's not so, according to the researchers. The study reveals that parasites in patients who relapse after leishmaniasis treatment have a greater infectivity than parasites from patients who were treated successfully. They are essentially a worse, more dangerous form of the parasite.

"Parasites from relapsed patients show an increased capacity to infect host cells," says co-author Manu Vanaerschot of the Institute of Tropical Medicine in Antwerp,Belgium. The authors write that it remains to be seen whether miltefosine treatment causes the increased infectivity of the parasite, or if parasites with greater infectivity are capable of escaping treatment.

Miltefosine is at the heart of a vast program aimed at ending visceral leishmaniasis on the Indian subcontinent (India, Bangladesh and Nepal), but 6.8% of Indian patients redevelop symptoms of the disease within 6 months after treatment and 20% of Nepalese patients relapse within 12 months after miltefosine treatment. Parasites collected from patients before and after treatment have been fingerprinted and are very close genetic matches, indicating that these patients are not simply re-infected with new parasites once their treatment ends, they are still carrying the same strain that sickened them before treatment. Other work revealed another surprising fact: parasites from relapsed patients were sensitive to miltefosine, so the failure of treatment was not due to drug resistance, a common suspect in cases where infectious disease treatment fails.

With re-infection and drug resistance now crossed off the list of possible reasons for the high relapse rate, the researchers set out to see what factors might really be at work. They examined the morphology of parasites taken from visceral leishmaniasis patients who were treated successfully and patients who relapsed. They found a significant association between the number of parasites in the metacyclic stage of their life cycle and patient treatment outcome. In other words, patients who relapsed were infected with parasites that have a greater infectivity, meaning they were more capable of infecting human cells.

The precise link between infectivity and treatment failure is not known, write the authors, but they propose that parasites with greater infectivity might cause a greater parasite load in the patient, making the case more difficult to treat, or perhaps they are able to evade the drug by hiding in parts of the body it doesn't easily penetrate, like the skin.

Vanaerschot says he and his colleagues saw a similar correlation between infectivity and treatment failure in patients who had been treated with the types of drugs that used to be favored in the region, pentavalent animonials. "At the time we thought that it was a very special case. But now that we've also seen this in parasites treated with other drugs, this indicates that it might be a more common problem than we originally thought."

Co-author Jean-Claude Dujardin, of the Institute of Tropical Medicine and the University of Antwerp, in Belgium, says regardless of the underlying cause-and-effect relationship, the findings are a wake-up call about the possible effects a therapy might have on pathogens it's supposed to kill.

"When we develop a drug to fight against a pathogen, we need to think about possible collateral damage. Of course we have to use these drugs, but we need surveillance to see if more aggressive parasites start to spread," says Dujardin.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

nachricht Colorectal cancer risk factors decrypted
16.07.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>