Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Legumes give nitrogen-supplying bacteria special access pass

20.12.2011
A 125-year debate on how nitrogen-fixing bacteria are able to breach the cell walls of legumes has been settled. A paper to be published on Monday by John Innes Centre scientists reports that plants themselves allow bacteria in.

Once inside the right cells, these bacteria take nitrogen from the air and supply it to legumes in a form they can use, ammonia. Whether the bacteria breach the cell walls by producing enzymes that degrade it, or the plant does the work for them, has been contested since an 1887 paper in which the importance of the breach was first recognised.

"Our results are so clear we can unequivocally say that the plant supplies enzymes to break down its own cell walls and allow bacteria access," said Professor Allan Downie, lead author from the John Innes Centre, which is strategically funded by BBSRC.

The findings form part of research at JIC to fully understand the symbiosis that enables legumes to be the largest producers of natural nitrogen fertilizer in agriculture. Manufacturing nitrogen fertilisers for non-legume crops uses more fossil fuels than any other agricultural process. Once they have been applied, they release nitrous oxide, a greenhouse gas about 300 times more powerful than carbon dioxide.

Legumes bypass both problems via their symbiosis with rhizobial bacteria from soil. The ultimate aim is to enable non-legumes, and possibly even cereals such as wheat and rice, to develop the symbiosis and source their own nitrogen from the air like legumes.

"The fact that legumes themselves call the shots is a great finding but it also shows the complexity of the challenge to try to transfer the process to non-legumes," said Downie.

Plants give rhizobial bacteria a pass, but only allow a controlled invasion, not access all areas.

A plant cell wall is hard to penetrate, constructed from carbohydrates including pectin. It is like a room with no doors or windows. Rhizobial bacteria signal to the legume that they are there and the plant produces pectate lyase, an enzyme that breaks down pectin and allows rhizobia through one wall.

But this is not an open door for pathogenic bacteria and there are strict controls on entry.

The bacteria induce the plant to build a tunnel through to the next cell wall and the next until the bacteria reach the root where they will reside. As they grow along the tunnel and from wall to wall, they are not allowed beyond the tunnel's confines, ensuring the plant guards itself from them taking advantage. The tunnel also provides a barrier against rogue bacteria getting into plant cells disguised as rhizobia.

When the rhizobia reach the right type of cell, they are allowed to break out of the tunnel. The plant forms nodules on its roots to house the bacteria, from where they convert atmospheric nitrogen for the plant. The plant takes this essential nutrient to the leaves where it promotes growth and photosynthesis.

"There are two major challenges to understanding how plants promote nitrogen fixation," said Downie.

"Firstly, how does the plant make the nodules that contain cells to which the bacteria can be delivered, and secondly how do the bacteria get into these nodule cells?"

The findings published in PNAS contribute to understanding the latter.

"There will be many more hurdles to overcome, but our findings reveal a key step in the development of nitrogen fixation symbioses."

Contacts
JIC Press Office
Zoe Dunford, Tel: 01603-255111, email: zoe.dunford@nbi.ac.uk
Andrew Chapple, Tel: 01603-251490, email: andrew.chapple@nbi.ac.uk
Reference: Legume pectate lyase required for root infection by rhizobia DOI: www.pnas.org/cgi/doi/10.1073/pnas.1113992109

NOTES TO EDITORS

Funding

The work was supported by Grant E017045/1, a Grant-in-Aid from the Biotechnology and Biological Research Council, and the John Innes Foundation.

About the John Innes Centre:

The John Innes Centre, http://www.jic.ac.uk, is a world-leading research centre based on the Norwich Research Park http://www.nrp.org.uk. The JIC's mission is to generate knowledge of plants and microbes through innovative research, to train scientists for the future, and to apply its knowledge to benefit agriculture, human health and well-being, and the environment. JIC delivers world class bioscience outcomes leading to wealth and job creation, and generating high returns for the UK economy. JIC is one of eight institutes that receive strategic funding from the Biotechnology and Biological Sciences Research Council and received a total of £28.4M investment in 2010-11.

About BBSRC

BBSRC invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond.

Funded by Government, and with an annual budget of around £445M, we support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals.

For more information about BBSRC, our science and our impact see: http://www.bbsrc.ac.uk

For more information about BBSRC strategically funded institutes see: http://www.bbsrc.ac.uk/institutes

Zoe Dunford | EurekAlert!
Further information:
http://www.nbi.ac.uk

Further reports about: Biotechnology cell walls job creation nitrogen fixation plant cell

More articles from Life Sciences:

nachricht Many cooks don't spoil the broth: Manifold symbionts prepare their host for any eventuality
14.10.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Diagnostics for everyone
14.10.2019 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

How to control friction in topological insulators

14.10.2019 | Physics and Astronomy

The shelf life of pyrite

14.10.2019 | Earth Sciences

Shipment tracking for "fat parcels" in the body

14.10.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>