Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Launch of project ECO COM'BAT: Sustainable energy storage with high-voltage batteries

07.03.2017

Cruising range is one of the greatest challenges for the rapid implementation of electromobility in Europe. Ten partners from industry and research organizations now join forces in the EU funded project ECO COM'BAT, coordinated by the Fraunhofer Project Group Materials Recycling and Resource Strategies, part of the Fraunhofer Institute for Silicate Research ISC, to develop the next generation of lithium-ion batteries – the high-voltage battery. Better performance is not the only goal for the new battery. Compared to conventional batteries the new type should be more powerful and even more sustainable due to the substitution of conventional, often expensive, rare or even critical materials.

Lithium-ion batteries are the preferred source of energy for electric vehicles and consumer devices owing to their high energy density and reliability. But expectations rise with green car sales and consumer devices grow more and more complex. Consumers ask a lot from a new battery: better safety, longer life spans, higher energy density, better performance and wider range.


Efficient lithium-ion pouch cell with the base materials.

© K. Selsam-Geißler, Fraunhofer ISC

The scientists teaming up in the project ECO COM'BAT („Ecological Composites for High-Efficient Li-Ion Batteries“) set out to develop a novel type of high-voltage battery. Their goal is to extend the range of electric vehicles, to shorten charging times, to reduce battery weight, to enhance stability and durability, and above all, to substitute critical or precious raw materials commonly used in conventional lithium-ion batteries.

Upscaling to production scale

In order to achieve all this at the same time, the project partners use innovative materials: low-cobalt NMC – short for lithium nickel manganese cobalt oxide – serves as active electrode material. It provides the required energy density but contains approx. 20 percent less cobalt than conventional solutions. Carbon nanotubes and porous carbon serve as conductive additives.

They enhance the electrical conductivity of the electrodes and allow high energy densities. A special high-voltage electrolyte based on the conductive salt lithium-bis(fluorosulfonyl)imide (LiFSI) serves as electrolyte which can be operated stably even at high voltages. An ion-conductive hybrid polymer coating protects the electrolyte materials and ensures safe and reliable use of the battery and a long lifespan.

The first task for the ECO COM'BAT team will be the upscaling of the processes required for the large-scale production of the new battery materials. The next step will then be the upscaling of the actual cell production to close-to-industry pilot scale and then to production scale. The challenge is to meet automotive standard requirements with energy and cost efficient production methods.

Efficient gentle recycling

A more widespread use of electric vehicles will invariably mean more waste batteries. To prevent problematic waste and also to recover precious materials like graphite, cobalt and lithium, new strategies must be developed to ensure efficient recycling. This begins with a design for recycling that allows to recover the contained materials to the best possible extent. To this effect, the researchers will also test innovative recycling processes.

Project partners and funding

The ECO COM'BAT project is supported by the EIT RawMaterials consortium of the European Institute for Innovation and Technology EIT. EIT RawMaterials, funded by the European Commission, is the world's largest and strongest consortium in the raw materials sector. Its vision is a European Union, where raw materials are a major strength. The task of the consortium is to strengthen the competitiveness, growth and attractiveness of the European raw material sector through radical innovation and entrepreneurship.

The innovative materials of the high-voltage battery will be provided by the industry partners Arkema, from France, and Umicore, from Belgium. The Fraunhofer ISC will be in charge of the required protective coating. Arkema and the Fraunhofer ISC will work together on upscaling of materials to pilot scale. The electrodes and cells will be manufacured by the French Alternative Energies and Atomic Energy Commission (CEA), the German manufacturer Custom Cells Itzehoe and by the Fraunhofer R&D Center Electromobility Bavaria, part of the Fraunhofer ISC, according to specifications provided by the French battery maker SAFT. The analysis and characterization of materials, components and cells will be performed by the Technical University Darmstadt, the Spanish research organization CSIC, the Italian research organization ENEA, as well as the Fraunhofer ISC and its Project Group IWKS. All simulation processes will be done at the Flemish Institute for Technological Research VITO. The Fraunhofer Project Group IWKS will manage all tests on new recycling strategies.

Weitere Informationen:

http://www.isc.fraunhofer.de
http://www.iwks.fraunhofer.de
http://www.eitrawmaterials.eu

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

More articles from Life Sciences:

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

nachricht Removing toxic mercury from contaminated water
21.11.2018 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>