Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laboratory detective work points to potential therapy for rare, drug-resistant cancer

13.02.2014
University of Pittsburgh Cancer Institute (UPCI) scientists have shown that old drugs might be able to do new tricks.

By screening a library of FDA-approved anticancer drugs that previously wouldn't have been considered as a treatment for a rare type of cancer, UPCI scientists were surprised when they found several potential possibilities to try if the cancer becomes resistant to standard drug treatment.


University of Pittsburgh Cancer Institute researchers screened 89 FDA-approved cancer drugs to see if any of them would be effective against a rare type of tumor. Surprisingly, 37 of the drugs, or 41.5 percent, exhibited promising activity against the tumor in laboratory tests, with two identified as candidates for future clinical trials. The brighter colors indicate anti-cancer activity.

Credit: UPCI

The discovery, which will be published in the February 15th issue of Cancer Research, demonstrates that high-throughput screening of already FDA-approved drugs can identify new therapies that could be rapidly moved to the clinic.

"This is known as 'drug repurposing,' and it is an increasingly promising way to speed up the development of treatments for cancers that do not respond well to standard therapies," said senior author Anette Duensing, M.D., assistant professor of pathology at UPCI. "Drug repurposing builds upon previous research and development efforts, and detailed information about the drug formulation and safety is usually available, meaning that it can be ready for clinical trials much faster than a brand-new drug."

Dr. Duensing and her team ran the screening on 89 drugs previously approved by the FDA in an attempt to find more treatment options for patients with gastrointestinal stromal tumors (GISTs), which are uncommon tumors that begin in the walls of the gastrointestinal tract. According to the American Cancer Society, about 5,000 cases of GISTs occur each year in the United States with an estimated five-year survival rate of 45 percent in patients with advanced disease.

GISTs are caused by a single gene mutation and can be successfully treated with the targeted therapy drug imatinib, known by the trade name Gleevec. However, about half of the patients treated with Gleevec become resistant to the drug within the first two years of treatment.

After studying how samples of GIST responded to various concentrations of the 89 drugs in the laboratory, Dr. Duensing and her colleagues identified 37 compounds that showed some anticancer activity in at least one of the concentrations tested. Importantly, they noted that the most promising candidates all belonged to only two major drug classes: inhibitors of gene transcription and so-called topoisomerase II inhibitors. Based on these findings, the research team selected the two most promising compounds for further testing – gene transcription inhibitor mithramycin A, which is in clinical trials to treat Ewing sarcoma, and topoisomerase II inhibitor mitoxantrone, which is used in metastatic breast cancer and leukemia.

Both drugs were highly effective in fighting GIST in laboratory tests. Moreover, the mechanism of action of each drug was linked to the specific underlying biology of these tumors.

"These are very encouraging results," said Dr. Duensing. "The next step will be moving our findings to clinical exploration to see if the results we found in the lab hold up in patients."

Additional co-authors of this study include Sergei Boichuk, M.D., Ph.D., Derek J. Lee, B.S., Keith R. Mehalek, M.S., Kathleen R. Makielski, M.S., Danushka S. Seneviratne, B.S., Rolando Cuevas, M.S., Joshua A. Parry, B.S., Matthew F. Brown, Ph.D., James P. Zewe, B.S., and Shih-Fan Kuan, M.D., Ph.D., all of Pitt; Agnieszka Wozniak, Ph.D., Patrick Schöffski, M.D., M.P.H., and Maria Debiec-Rychter, M.D., Ph.D., all of the Catholic University in Leuven, Belgium; Nina Korzeniewski, Ph.D., of the University of Heidelberg in Germany; and Takahiro Taguchi, M.D., of Kochi Medical School in Japan.

This research was supported by American Cancer Society grant no. RSG-08-092-01-CCG, The Life Raft Group, GIST Cancer Research Fund and the Howard Hughes Medical Institute.

About UPCI

As the only NCI-designated comprehensive cancer center in western Pennsylvania, UPCI is a recognized leader in providing innovative cancer prevention, detection, diagnosis, and treatment; bio-medical research; compassionate patient care and support; and community-based outreach services. UPCI, a partner with UPMC CancerCenter, investigators are world-renowned for their work in clinical and basic cancer research.

http://www.upmc.com/media

Contact:

Allison Hydzik
Phone: 412-647-9975
E-mail: HydzikAM@upmc.edu
Contact:
Jennifer Yates
Phone: 412-647-9966
E-mail: YatesJC@upmc.edu

Allison Hydzik | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>