Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key protein aids in DNA repair

12.04.2010
Findings have potential for cancer, other age-related diseases

Scientists have shown in multiple contexts that DNA damage over our lifetimes is a key mechanism behind the development of cancer and other age-related diseases. Not everyone gets these diseases, because the body has multiple mechanisms for repairing the damage caused to DNA by aging, the environment and other human behaviors – but the mechanisms behind certain kinds of DNA repair have not been well-understood.

In a paper published today in the journal Nature, researchers at the University of North Carolina at Chapel Hill's Lineberger Comprehensive Cancer Center have shown that a particular protein – called Ku – is particularly adept at healing damaged strands of DNA.

According to Dale Ramsden, PhD, associate professor in the department of biochemistry and biophysics and a member of the curriculum in genetics and molecular biology, Ku is a very exciting protein because it employs a unique mechanism to repair a particularly drastic form of DNA damage.

"Damage to DNA in the form of a broken chromosome, or double strand break, can be very difficult to repair – it is not a clean break and areas along the strand may be damaged at the level of the fundamental building blocks of DNA – called nucleotides," he notes.

Broken chromosomes can be compared to a break in a strand of yarn made up of several different threads or plies. Unless scissors are used to cut the yarn, the strand frays and may break or be damaged at several different places up and down the length of the yarn. These rough ends get "dirty" – making them harder to repair.

"It has been assumed in the past that double strand breaks are the most difficult class of DNA damage to repair and it is often presumed that they simply can not be repaired accurately," says Ramsden.

The team found that the protein Ku, which has long been appreciated for its ability to find chromosome breaks along a strand of DNA, actually removes the "dirt" at broken chromosome ends, allowing for much more accurate repair than believed possible.

"This protein actually heals at the nucleotide level as well as the level of the chromosome," says Ramsden, comparing its action to washing and disinfecting a cut before trying to sew it up to promote healing.

The team is hopeful that the discovery of this mechanism for DNA repair may lead to a target for treatment of age-related diseases caused by chromosome damage in the future.

Other team members include Steven Roberts, Natasha Strande, Martin Burkhalter, Christina Strom and Jody Havener from UNC and Paul Hasty from the University of Texas Health Science Center at San Antonio.

Ellen de Graffenreid | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

nachricht Biological signalling processes in intelligent materials
18.07.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>