Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jumping gene enabled key step in corn domestication

26.09.2011
Corn split off from its closest relative teosinte, a wild Mexican grass, about 10,000 years ago thanks to the breeding efforts of early Mexican farmers.

Today it's hard to tell that the two plants were ever close kin: Corn plants stand tall, on a single sturdy stalk, and produce a handful of large, kernel-filled ears. By contrast, teosinte is branchy and bushy, with scores of thumb-sized "ears," each containing only a dozen or so hard-shelled kernels.

In seeking to better understand how teosinte gave rise to corn, a scientific team has pinpointed one of the key genetic changes that paved the way for corn's domestication. As reported today (Sept. 25) on the Nature Genetics website, a major change occurred about 23,000 years ago, when a small piece of DNA — a jumping gene known as Hopscotch — inserted itself into the control region of a teosinte gene that affects plant architecture. This case is among the first to show that a jumping gene can cause alterations in gene expression that impact evolution.

"Hopscotch cranked up the gene's expression, which helped the plant produce larger ears with more kernels, plus become less branchy, and so those early farmers picked plants with the Hopscotch to breed," says University of Wisconsin-Madison plant geneticist John Doebley, a corn evolution expert who led the team.

Jumping genes are strange genetic entities. Found in all sorts of organisms, these pieces of DNA, which carry just a few genes, have the ability to splice themselves out of their current position in the genome and "jump" to other spots. As they mix and mingle with the genome, jumping genes, which are also known as transposable elements, create genetic variation that evolution can act upon. Typically, jumping genes' effects are neutral or bad, as when they land in a stretch of junk DNA or disrupt a critical gene.

"But occasionally, they do something good," says Doebley. "So we found a case where the mutation caused by a transposable element has done something good."

In corn, Hopscotch dials up expression of the teosinte branched 1 (tb1) gene, which produces a transcriptional regulator protein that represses branching, encouraging the plant to grow a single stalk and produce larger ears with more kernels. When early Mexican farmers first encountered teosinte with this Hopscotch insertion, the rare plants must have been prized breeding stock: Today 95 percent of modern corn has this particular genetic alteration.

In recent years, researchers have begun finding more and more cases where transposable elements are associated with altered gene expression, but the links are often only correlative. For this project, however, the paper's first author, Anthony Studer, Doebley's former graduate student who now works as a postdoctoral researcher at Cornell, took the time to show that Hopscotch does in fact cause elevated gene expression. In doing so, this study is among the first to prove that jumping genes can impact gene expression, and, in turn, evolution.

"It's rare that geneticists can explain the genetic changes involved in domestication at this level of detail," notes Doebley, who has made a number of impressive contributions to the corn evolution field over the years.

Early in his career, Doebley helped identify teosinte as corn's closest relative, and in 2005, his team showed that a single genetic mutation was responsible for removing the hard casing around teosinte's kernels, exposing soft grain, another critical step in corn's domestication.

While Doebley's motivation comes from the desire to understand basic evolutionary processes, his work, he notes, could also have real-world applications. "People in plant breeding and plant biotechnology take some interest in this work because they are basically trying to continue the domestication process," he explains. "So understanding what's worked in the past could influence what they do in the present to improve corn."

In addition to Doebley and Studer, the Nature Genetics paper's authors include Qiong Zhao, a graduate student in Doebley's lab, and Jeffrey Ross-Ibarra, an assistant professor of plant sciences at the University of California, Davis.

The work was funded through a U.S. Department of Agriculture Hatch grant and by the National Science Foundation.

— Nicole Miller, nemiller2@wisc.edu, 608-262-3636

John Doebley | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>