Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ISU researchers help map first plant-parasitic nematode genome sequence

08.09.2008
There are numerous plant-parasitic nematodes in the world, but only a handful are responsible for the largest part of an estimated $157 billion in agricultural damage globally every year. Nematodes are small worms that burrow into plant roots and feed off living cells.

Now, Iowa State University researchers have contributed to the release of the annotated genome of one of the most destructive nematodes: Meloidogyne incognita -- the southern root-knot nematode, as reported recently in the journal Nature Biotechnology.

Sequencing the genome is a critical step toward comprehensively understanding how the organism works and may pave the way for research on ways to fight the pest.

"This is considered to be one of, if not the most important plant-parasitic nematode species across the world," said Thomas Baum, professor and chair of plant pathology and head of Iowa State University's contribution to the genome sequence project.

... more about:
»Genome »nematode »plant-parasitic »sequence

Root-knot nematodes are so important because they can be found almost anywhere in the world on almost any plant, he said. Nematodes are the most abundant animals on earth.

"Many of the nematodes that are really bad pathogens are very specialized on which plant they attack," said Baum. "This nematode has a huge host range. For us nematologists, it is very interesting and challenging to study."

Because the pest is so widespread, many nematologists around the world were eager to help with the project. The lead investigator was Pierre Abad of the Insitut National de Recherche Agronomiquea, a French research group, with help from researchers in Belgium, Holland, Great Britain, Switzerland, and Iowa State University and North Carolina State University in the US.

"Because it is such a worldwide problem, people are eager to contribute," Baum said. "Also, because it is the first plant-parasitic nematode to have its sequence released, people are very excited about it."

Chemical treatments for killing nematodes, called nematicides, are dangerous to humans and other animals so they've been restricted in use for decades. Technology for controlling nematodes has advanced little in the past three decades.

Besides being a devastating crop pathogen, Meloidogyne incognita has some remarkable biological adaptations that make it a fascinating organism to study.

Baum said that the sex of the tiny worms, or better the lack thereof is very intriguing. Only females reproduce and they do so without having sex, so it remains a puzzle why males of the species even exist. And since the females don't mate to reproduce, the offspring should be genetically identical to the mother -- like a clone - but they aren't. And as the offspring matures into males or females, some start as females and then change into males.

Baum's group included postdoctoral researcher Tarek Hewezi and assistant scientist Tom Maier from Iowa State. The three worked on a specific part of the genome and performed manual annotations of genes. Professor Davis and postdoctoral research associate, Noureddine Hamamouch, used the current known parasitism genes to identify the full suite or predicted parasitism genes in the root-knot nematode genome.

With this sequencing done, Baum thinks researchers can now try to understand this nematode. He also cautions that finding ways to control this pest will be a long process.

"For any effort in which you want to control the nematode, this is a great resource," Baum said. "But having the genome is only one of many steps in the right direction. Albeit, a very big one!"

Thomas Baum | EurekAlert!
Further information:
http://www.iastate.edu

Further reports about: Genome nematode plant-parasitic sequence

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>